• Title/Summary/Keyword: Vector Fields

Search Result 534, Processing Time 0.031 seconds

Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid (자성유체의 자유표면의 변형에 관한 수치해석)

  • Nam S.W.;Kamlyama S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF

ENERGY ON A PARTICLE IN DYNAMICAL AND ELECTRODYNAMICAL FORCE FIELDS IN LIE GROUPS

  • Korpinar, Talat;Demirkol, Ridvan Cem
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.265-280
    • /
    • 2018
  • In this study, we firstly define equations of motion based on the traditional model Newtonian mechanics in terms of the Frenet frame adapted to the trajectory of the moving particle in Lie groups. Then, we compute energy on the moving particle in resultant force field by using geometrical description of the curvature and torsion of the trajectory belonging to the particle. We also investigate the relation between energy on the moving particle in different force fields and energy on the particle in Frenet vector fields.

SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS

  • CHEN, BANG-YEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1535-1547
    • /
    • 2015
  • A vector field on a Riemannian manifold (M, g) is called concircular if it satisfies ${\nabla}X^v={\mu}X$ for any vector X tangent to M, where ${\nabla}$ is the Levi-Civita connection and ${\mu}$ is a non-trivial function on M. A smooth vector field ${\xi}$ on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies the following Ricci soliton equation: $$\frac{1}{2}L_{\xi}g+Ric={\lambda}g$$, where $L_{\xi}g$ is the Lie-derivative of the metric tensor g with respect to ${\xi}$, Ric is the Ricci tensor of (M, g) and ${\lambda}$ is a constant. A Ricci soliton (M, g, ${\xi}$, ${\lambda}$) on a Riemannian manifold (M, g) is said to have concircular potential field if its potential field is a concircular vector field. In the first part of this paper we determine Riemannian manifolds which admit a concircular vector field. In the second part we classify Ricci solitons with concircular potential field. In the last part we prove some important properties of Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular vector field.

CURVES ORTHOGONAL TO A VECTOR FIELD IN EUCLIDEAN SPACES

  • da Silva, Luiz C.B.;Ferreira, Gilson S. Jr.
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1485-1500
    • /
    • 2021
  • A curve is rectifying if it lies on a moving hyperplane orthogonal to its curvature vector. In this work, we extend the main result of [Chen 2017, Tamkang J. Math. 48, 209] to any space dimension: we prove that rectifying curves are geodesics on hypercones. We later use this association to characterize rectifying curves that are also slant helices in three-dimensional space as geodesics of circular cones. In addition, we consider curves that lie on a moving hyperplane normal to (i) one of the normal vector fields of the Frenet frame and to (ii) a rotation minimizing vector field along the curve. The former class is characterized in terms of the constancy of a certain vector field normal to the curve, while the latter contains spherical and plane curves. Finally, we establish a formal mapping between rectifying curves in an (m + 2)-dimensional space and spherical curves in an (m + 1)-dimensional space.

Off-line Parameter Estimation for Vector Control of Induction Motors in Continuous Process Line (연속공정라인에서 벡터제어용 유도전동기의 오프라인 파라미터 추정)

  • 권병기;최창호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 2000
  • In this paper, a parameter estimation method for a vector control of induction motors is presented. It can be easily implemented to the inverters in the industrial fields such as continuous process line, which requires the high performance of torque control, because of being estimated under the condition of the actual operating states. Also, this method nems no additional hardware such as voltage sensors and measuring equipments by the estimation of output voltage, and has good accuracy and repeatability by observing the variation of the stator voltage due to estimation errors. Experimental results verify the validity and usefulness of the proposed estimation method in the industrial fields.

  • PDF

Locally Optimal and Robust Backstepping Design for Systems in Strict Feedback Form with $C^1$ Vector Fields

  • Back, Ju-Hoon;Kang, Se-Jin;Shim, Hyung-Bo;Seo, Jin-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.364-377
    • /
    • 2008
  • Due to the difficulty in solving the Hamilton-Jacobi-Isaacs equation, the nonlinear optimal control approach is not very practical in general. To overcome this problem, Ezal et al. (2000) first solved a linear optimal control problem for the linearized model of a nonlinear system given in the strict-feedback form. Then, using the backstepping procedure, a nonlinear feedback controller was designed where the linear part is same as the linear feedback obtained from the linear optimal control design. However, their construction is based on the cancellation of the high order nonlinearity, which limits the application to the smooth ($C^{\infty}$) vector fields. In this paper, we develop an alternative method for backstepping procedure, so that the vector field can be just $C^1$, which allows this approach to be applicable to much larger class of nonlinear systems.

Korean Named Entity Recognition and Classification using Word Embedding Features (Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류)

  • Choi, Yunsu;Cha, Jeongwon
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.678-685
    • /
    • 2016
  • Named Entity Recognition and Classification (NERC) is a task for recognition and classification of named entities such as a person's name, location, and organization. There have been various studies carried out on Korean NERC, but they have some problems, for example lacking some features as compared with English NERC. In this paper, we propose a method that uses word embedding as features for Korean NERC. We generate a word vector using a Continuous-Bag-of-Word (CBOW) model from POS-tagged corpus, and a word cluster symbol using a K-means algorithm from a word vector. We use the word vector and word cluster symbol as word embedding features in Conditional Random Fields (CRFs). From the result of the experiment, performance improved 1.17%, 0.61% and 1.19% respectively for TV domain, Sports domain and IT domain over the baseline system. Showing better performance than other NERC systems, we demonstrate the effectiveness and efficiency of the proposed method.

LONG PATHS IN THE DISTANCE GRAPH OVER LARGE SUBSETS OF VECTOR SPACES OVER FINITE FIELDS

  • BENNETT, MICHAEL;CHAPMAN, JEREMY;COVERT, DAVID;HART, DERRICK;IOSEVICH, ALEX;PAKIANATHAN, JONATHAN
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.115-126
    • /
    • 2016
  • Let $E{\subset}{\mathbb{F}}^d_q$, the d-dimensional vector space over the finite field with q elements. Construct a graph, called the distance graph of E, by letting the vertices be the elements of E and connect a pair of vertices corresponding to vectors x, y 2 E by an edge if ${\parallel}x-y{\parallel}:=(x_1-y_1)^2+{\cdots}+(x_d-y_d)^2=1$. We shall prove that the non-overlapping chains of length k, with k in an appropriate range, are uniformly distributed in the sense that the number of these chains equals the statistically correct number, $1{\cdot}{\mid}E{\mid}^{k+1}q^{-k}$ plus a much smaller remainder.

A Motion-Adaptive De-interlacing Method using Temporal and Spatial Domain Information (시공간 정보를 이용한 움직임 기반의 De-interlacing 기법)

  • 심세훈;김용하;정제창
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.9-12
    • /
    • 2002
  • In this Paper, we propose an efficient de-interlacing algorithm using temporal and spatial domain information. In the proposed scheme, motion estimation is performed same parity fields, i.e., if current field is even field, reference fields are previous even field and forward even field. And then motion vector refinement is performed to improve the accuracy of motion vectors. In the interpolating step, we use median filter to reduce the interpolation error caused by incorrect motion vector. Simulations conducted for various video sequences have shown the efficiency of the proposed interpolator with significant improvement over previous methods in terms of both PSNR and perceived image quality.

  • PDF

HEISENBERG GROUPS - A UNIFYING STRUCTURE OF SIGNAL THEORY, HOLOGRAPHY AND QUANTUM INFORMATION THEORY

  • Binz, Ernst;Pods, Sonja;Schempp, Walter
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.1-57
    • /
    • 2003
  • Vector fields in three-space admit bundles of internal variables such as a Heisenberg algebra bundle. Information transmission along field lines of vector fields is described by a wave linked to the Schrodinger representation in the realm of time-frequency analysis. The preservation of local information causes geometric optics and a quantization scheme. A natural circle bundle models quantum information visualized by holographic methods. Features of this setting are applied to magnetic resonance imaging.