Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.5.1535

SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS  

CHEN, BANG-YEN (DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.5, 2015 , pp. 1535-1547 More about this Journal
Abstract
A vector field on a Riemannian manifold (M, g) is called concircular if it satisfies ${\nabla}X^v={\mu}X$ for any vector X tangent to M, where ${\nabla}$ is the Levi-Civita connection and ${\mu}$ is a non-trivial function on M. A smooth vector field ${\xi}$ on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies the following Ricci soliton equation: $$\frac{1}{2}L_{\xi}g+Ric={\lambda}g$$, where $L_{\xi}g$ is the Lie-derivative of the metric tensor g with respect to ${\xi}$, Ric is the Ricci tensor of (M, g) and ${\lambda}$ is a constant. A Ricci soliton (M, g, ${\xi}$, ${\lambda}$) on a Riemannian manifold (M, g) is said to have concircular potential field if its potential field is a concircular vector field. In the first part of this paper we determine Riemannian manifolds which admit a concircular vector field. In the second part we classify Ricci solitons with concircular potential field. In the last part we prove some important properties of Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular vector field.
Keywords
concircular vector field; Ricci soliton; submanifolds; Einstein manifold; concircular potential field; concurrent vector field; concircular curvature tensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
2 B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
3 B.-Y. Chen, Pseudo-Riemannian Geometry, ${\delta}$-invariants and Applications, World Scientific, Hackensack, NJ, 2011.
4 B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 46 (2014), no. 12, Art. 1833, 5 pp.
5 B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd Edition, World Scientific, Hackensack, NJ, 2015.
6 B.-Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19 (2014), no. 1, 13-21.
7 B.-Y. Chen and S. Deshmukh, Classification of Ricci solitons on Euclidean hypersurfaces, Internat. J. Math. 25 (2014), no. 11, 1450104, 22 pp.   DOI   ScienceOn
8 B.-Y. Chen and S. Deshmukh, Ricci solitons and concurrent vector fields, Balkan J. Geom. Appl. 20 (2015), no. 1, 14-25.
9 B.-Y. Chen and K. Yano, On submanifolds of submanifolds of a Riemannian manifold, J. Math. Soc. Japan 23 (1971), no. 3, 548-554.   DOI
10 J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212.   DOI   ScienceOn
11 J. T. Cho and M. Kimura, Ricci solitons of compact real hypersurfaces in Kahler manifolds, Math. Nachr. 284 (2011), no. 11-12, 1385-1393.   DOI   ScienceOn
12 J. T. Cho and M. Kimura, Ricci solitons on locally conformally flat hypersurfaces in space forms, J. Geom. Phys. 62 (2012), no. 8, 1882-1891.   DOI   ScienceOn
13 A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (1939), no. 3, 443-473.   DOI   ScienceOn
14 R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995.
15 S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241 (1979), no. 3, 209-215.   DOI
16 J. Morgan and G. Tian, Ricci Flow and the Poincare Conjecture, Clay Mathematics Monographs, 5, Cambridge, MA, 2014.
17 G. Perelman, The Entropy Formula For The Ricci Flow And Its Geometric Applications, arXiv math/0211159.
18 Ya. L. Sapiro, Geodesic fields of directions and projective path systems, Mat. Sb. N.S. 36 (78) (1955), 125-148.
19 H. Takeno, Concircular scalar field in spherically symmetric space-times I, Tensor 20 (1967), no. 2, 167-176.
20 K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.   DOI