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SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND

THEIR APPLICATIONS TO RICCI SOLITONS

Bang-Yen Chen

Abstract. A vector field on a Riemannian manifold (M, g) is called con-
circular if it satisfies ∇Xv = µX for any vector X tangent to M , where
∇ is the Levi-Civita connection and µ is a non-trivial function on M . A
smooth vector field ξ on a Riemannian manifold (M, g) is said to define
a Ricci soliton if it satisfies the following Ricci soliton equation:

1

2
Lξg + Ric = λg,

where Lξg is the Lie-derivative of the metric tensor g with respect to ξ,
Ric is the Ricci tensor of (M,g) and λ is a constant. A Ricci soliton
(M, g, ξ, λ) on a Riemannian manifold (M,g) is said to have concircular
potential field if its potential field ξ is a concircular vector field.

In the first part of this paper we determine Riemannian manifolds
which admit a concircular vector field. In the second part we classify Ricci
solitons with concircular potential field. In the last part we prove some
important properties of Ricci solitons on submanifolds of a Riemannian
manifold equipped with a concircular vector field.

1. Introduction

A. Fialkow introduced in [13] the notion of concircular vector fields on a
Riemannian manifold M as vector fields which satisfy

∇Xv = µX, X ∈ TM,(1)

where ∇ denotes the Levi-Civita connection, TM the tangent bundle of M and
µ a non-trivial function on M . Concircular vector fields also known as geodesic
fields in literature since integral curves of such vector fields are geodesics (see
e.g. [18]). A concircular vector field v is called a concurrent vector field if
the function µ in Eq. (1) is one (see, for instance, [2, 8, 9]). The notion of
concircular vector fields can be extended naturally to concircular vector fields
in pseudo-Riemannian manifolds.
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Concircular vector fields appeared in the study of concircular mappings, i.e.,
conformal mappings preserving geodesic circles [20]. Such vector fields also play
an important role in the theory of projective and conformal transformations.
Concircular vector fields have interesting applications in physics as well, in
particular in general relativity, e.g., trajectories of time-like concircular fields
in the de Sitter model determine the world lines of receding or colliding galaxies
satisfying the Weyl hypothesis (cf. [19]). Also it was proved recently by the
author in [4] that a Lorentzian manifold is a generalized Robertson-Walker
spacetime if and only if it admits a timelike coincircular vector field.

A smooth vector field ξ on a Riemannian manifold (M, g) is said to define a
Ricci soliton if it satisfies the following Ricci soliton equation:

(2)
1

2
Lξg +Ric = λg,

where Lξg is the Lie-derivative of the metric tensor g with respect to ξ, Ric is
the Ricci tensor of (M, g) and λ is a constant. We shall denote a Ricci soliton
by (M, g, ξ, λ). We call the vector field ξ the potential field. A Ricci soliton
(M, g, ξ, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0,
or λ < 0, respectively. A trivial Ricci soliton is one for which ξ is zero or Killing,
in which case the metric is Einsteinian (see, for instance, [6, 7, 10, 14, 16, 17]).

Compact Ricci solitons are the fixed points of the Ricci flow:

∂

∂t
g(t) = −2Ric(g(t))

projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings, and often arise as blow-up limits for the Ricci flow on compact
manifolds. Further, Ricci solitons model the formation of singularities in the
Ricci flow and they correspond to self-similar solutions (cf. e.g. [16]).

A Ricci soliton (M, g, ξ, λ) is called gradient if its potential field ξ is the
gradient of some function f on M . We denote such a gradient Ricci soliton
by (M, g, f, λ) and call the smooth function f the potential function. For a
gradient Ricci soliton (M, g, f, λ), the soliton equation can be expressed as

Ricf = λg,

where Ricf := Ric+Hess(f) is known as the Bakry-Emery curvature. Hence
a gradient Ricci soliton has constant Bakry-Emery curvature; a similar role as
an Einstein manifold.

A gradient Ricci soliton (M, g, f, λ) is called trivial if its potential function
f is a constant. It follows from Eq.(2) that trivial gradient Ricci solitons are
trivial Ricci solitons automatically. G. Perelman proved in [17] that the Ricci
solitons on compact simply connected Riemannian manifolds are gradient Ricci
solitons as solutions of Ricci flow.

During the last two decades, the geometry of Ricci solitons has been the
focus of attention of many mathematicians. It has become more important
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after G. Perelman applied Ricci solitons to solve the long standing Poincaré
conjecture posed in 1904.

In the first part of this paper we determine Riemannian manifolds which
admit a concircular vector field. In the second part we classify Ricci solitons
with concircular potential fields. In the last part we prove some important
properties of Ricci solitons on submanifolds of a Riemannian manifold equipped
with a concircular vector field.

2. Preliminaries

2.1. Basic formulas and definitions for submanifolds

For general references on Riemannian submanifolds, we refer to [2, 3, 5].
Let (Nm, g̃) denote an m-dimensional Riemannian manifold and let φ :

Mn → Nm be an isometric immersion from an n-dimensional Riemannian
manifold (Mn, g) into (Nm, g̃). Denote by ∇ and ∇̃ the Levi-Civita connec-
tions on (Mn, g) and (Nm, g̃), respectively.

For vector fields X,Y tangent to Mn and η normal to Mn, the formula of
Gauss and the formula of Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ),(3)

∇̃Xη = −AηX +DXη,(4)

where ∇XY and h(X,Y ) are the tangential and the normal components of

∇̃XY . Similarly, −AηX and DXη are the tangential and normal components

of ∇̃Xη. These two formulas define the second fundamental form h, the shape
operator A, and the normal connection D of Mn in the ambient space Nm.

For a normal vector η ∈ T⊥
p M at p ∈ M , Aη is a self-adjoint endomorphism

of the tangent space TpM . The shape operator and the second fundamental
form are related by

g̃(h(X,Y ), η) = g(AηX,Y ).(5)

The mean curvature vector H of Mn in Nm is defined by

H =

(

1

n

)

traceh.(6)

The equations of Gauss and Codazzi are given respectively by

g(R(X,Y )Z,W ) = g̃(R̃(X,Y )Z,W ) + g̃(h(X,W ), h(Y, Z))(7)

− g̃(h(X,Z), h(Y,W )),

(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z),(8)

for vectors X,Y, Z,W tangent to M and ζ, η normal to M , where (R̃(X,Y )Z)⊥

is the normal component of R̃(X,Y )Z and ∇̄h is defined by

(9) (∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).
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For a function f on a Riemannian manifold M , we denote by ∇f and Hf

the gradient of f and the Hessian of f , respectively. Thus we have

g(∇f,X) = Xf,(10)

Hf (X,Y ) = XY f − (∇XY )f.(11)

Let {e1, . . . , en} be a local orthonormal frame on a Riemannian n-manifold
Mn. Denote by {ω1, . . . , ωn} the dual frame of 1-forms of {e1, . . . , en}. The

connection forms ωj
i (i, j = 1, . . . , n) are defined by

∇Xei =

n
∑

j=1

ωj
i (X)ej , i = 1, . . . , n.(12)

From Cartan’s structure equations, we have

dωi = −
n
∑

j=1

ωi
j ∧ ωj , i = 1, . . . , n.(13)

A foliation D on a manifold M is an integrable distribution, i.e., D is a
vector subbundle of the tangent bundle TM such that, for any vector fields
X,Y in D, the Lie bracket [X,Y ] takes values in D as well. A foliation D on a
Riemannian manifold M is called totally umbilical, if every leaf of D is a totally
umbilical submanifold of M . If, in addition, the mean curvature vector of every
leaf is parallel in the normal bundle, then D is called a spherical foliation. In
this case, leaves of D are extrinsic spheres of M . If leaves of a foliation D are
totally geodesic submanifolds, D is called a totally geodesic foliation (cf. e.g.,
[3, 5]).

3. Riemannian manifolds with concircular vector fields

First, we give the following examples of Riemannian manifolds endowed with
concircular vector fields.

Example 3.1. Let I be an open interval of the real line R and let ϕ(s), s ∈ I,
be a function on I which is nowhere zero. Consider a warped product manifold
of the form:

I ×ϕ(s) F,(14)

where F is a Riemannian manifold. The metric tensor g of I ×ϕ(s) F is given

by g = ds2 + ϕ2(s)gF , where gF is the metric tensor of the second factor F .
Consider the vector field given by

v = ϕ(s)
∂

∂s
.(15)

It follows from Proposition 4.1 of [3, page 79] that the vector field v satisfies
Eq. (1) with µ = ϕ′(s). Thus v is a concircular vector field.

The next result implies that Example 3.1 provides all Riemannian manifolds
which admit a nowhere zero concircular vector field.



CONCIRCULAR VECTOR FIELDS AND RICCI SOLITONS 1539

Theorem 3.1. If M is a Riemannian n-manifold which admits a nowhere zero

concircular vector field, then M is locally a warped product I ×ϕ(s) F , where

ϕ(s) is a nowhere vanishing function and F is a Riemannian (n− 1)-manifold.

Proof. Assume that v is a concircular vector field on a Riemannian manifold
such that v is nowhere zero. Let us put

v = ϕe1,(16)

where e1 is a unit vector field in the direction of v. Extend e1 to an orthonormal
frame e1, . . . , en on M . It follows from (1) and a direct computation that

(17)
R(ei, v)v = ∇ei∇vv −∇v∇eiv −∇[ei,v]v

= (eiµ)v − (vµ)ei, i = 2, . . . , n,

where µ is defined by (1). From (17) and 〈R(ei, v)v, v〉 = 0, we get

e2µ = · · · = enµ = 0.(18)

Thus the gradient ∇µ is parallel to v.
From (1) with X = e1 and (16) we find

µe1 = ∇e1(ϕe1) = (e1ϕ)e1 + ϕ∇e1e1,

which gives

e1ϕ = µ, ∇e1e1 = 0.(19)

From the second equation in (19) we know that the integral curves of e1 are
geodesics in M . Therefore the distribution D1 = Span{e1} is a totally geodesic
foliation. Let us put D2 = Span{e2, . . . , en}.

From (16) and (1) with X = ei with i = 2, . . . , n, we find

µei = ∇ei(ϕe1) = (eiϕ)e1 + ϕ∇eie1,

which implies

e2ϕ = · · · = enϕ = 0,(20)

ϕ∇eie1 = µei.(21)

It follows from (12) and (21) that

ω1
i (ej) =

µ

ϕ
δij , 2 ≤ i, j ≤ n.(22)

From (22) we conclude that D2 is an integrable distribution whose leaves are
totally umbilical in M . Moreover, the mean curvature of leaves of D2 are given
by µ/ϕ. Since leaves of D2 are hypersurfaces, it follows from (18) and (20)
that the mean curvature vector fields of leaves of D2 are parallel in the normal
bundle in M . Thus D2 is a spherical foliation. Consequently, by a result of [15]
(or Theorem 4.4 of [3, page 90]) we conclude that M is locally a warped product
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I ×f(s) F , where f(s) is a function on I, ∂/∂s = e1, and F is a Riemannian
(n− 1)-manifold. Therefore the sectional curvature of M satisfies

K(e1, X) = −
f ′′(s)

f(s)
(23)

for any unit vector X orthogonal to e1.
On the other hand, it follows from (16) and (17) that we also have

ϕK(e1, X) = −vµ = −µ′(s)(24)

for any unit vector X orthogonal to e1. Thus, after combining (24) with (19)
and (23), we obtain

f ′′(s)

f(s)
=

µ′(s)

ϕ
=

ϕ′′(s)

ϕ(s)
.

Thus if we choose f(s) = ϕ(s), then M is locally a warped product I×ϕ(s)F . A

direct computation yields∇X(ϕ(s) ∂
∂s
) = ϕ′(s)X forX tangent to I×f(s)F . �

4. Concircular vector fields on real space forms

In this section we determine all concircular vector fields on Riemannian
manifolds of constant curvature.

First we give the following necessary and sufficient condition for a gradient
vector field on a Riemannian manifold to be concircular.

Lemma 4.1. Let f be a function on a Riemannian manifold M . Then the

gradient ∇f of f is a concircular vector field if and only if the Hessian Hf of

f satisfies

Hf (X,Y ) = µg(X,Y )(25)

for X,Y tangent to M , where µ is the function on M . Moreover, in such case

the function µ satisfies Eq. (1) with v = ∇f .

Proof. Let f be a function of a Riemannian manifold M . Assume that the
Hessian of f satisfies (25). Then we have

(26)

g(X,µY ) = XY f −∇XY f

= X〈Y,∇f〉 − 〈∇XY,∇f〉

= 〈Y,∇X(∇f)〉

for vector fields X,Y tangent to M . Thus we obtain ∇X(∇f) = µX , which
implies that v = ∇f is a concircular vector field satisfying Eq. (1).

The converse can be verified in a similar way. �

The following result classifies all concircular vector fields on E
n.

Proposition 4.2. Let v be a nonzero vector field on the Euclidean n-space E
n.

Then v is a concircular vector field if and only if only if v = bx, where b is a

nonzero constant and x is a concurrent vector field.
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Proof. If v is a concircular vector field on a Riemannian manifold, then it
follows from (1) and a direct computation that

(27)
R(X, v)v = ∇X∇vv −∇v∇Xv −∇[X,v]v

= (Xµ)v − (vµ)X,

for any vector field X perpendicular to v, where µ is defined by (1). It follows
from (27) that the gradient ∇µ is parallel to v.

If M is the Euclidean n-space E
n, we have R = 0. Hence we obtain from

(27) that Xv = vµ = 0, which implies that µ is a nonzero constant, say b.
Consequently, x = v/b is a concurrent vector field.

The converse is trivial. �

The next result determines all concircular vector fields on the unit n-sphere.

Proposition 4.3. Let {u1, . . . , un} be an isothermal coordinate system on

Sn(1) so that the metric tensor of Sn(1) is given by

(28) g =
4

(1 +
∑n

j=1 u
2
j)

2

n
∑

i=1

du2
i .

Then a vector field v on Sn(1) is concircular if and only if, up to translations

of u1, . . . , un, v is a gradient vector field given by v = −∇µ, where

µ =
1−

∑n
i=1 u

2
i

2 + 2
∑n

j=1 u
2
j

.(29)

Moreover, µ is exactly the function satisfying (1).

Proof. Let {u1, . . . , un} be the isothermal coordinates so that the metric tensor
of Sn(1) is given by Eq. (28). If v is a concircular vector field of Sn(1), then
(27) holds.

Since Sn(1) is of constant curvature one, we also have

R(X, v)v = g(v, v)X − g(X, v)v(30)

for X perpendicular to v. Thus we find from (27) and (30) that

Xµ = −g(X, v), vµ = −g(v, v).(31)

Hence v = ∇f is a gradient field with f = −µ.
On the other hand, it follows from a direct computation that the Levi-Civita

connection of (28) satisfies

(32)

∇∂ui
∂ui

=
−2

1 +
∑n

i=1 u
2
i

{

ui∂ui
−
∑

j 6=i

uj∂uj

}

,

∇∂ui
∂uj

=
−2

1 +
∑n

i=1 u
2
i

{

ui∂uj
+ uj∂ui

}

, 1 ≤ i 6= j ≤ n,

where ∂ui
= ∂/∂ui, i = 1, . . . , n.
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From f = −µ, Eqs. (11) and (32) we find

(33)

Hf(∂ui
, ∂ui

) = −
∂2µ

∂2ui

−
2

1 +
∑n

i=1 u
2
i

{

ui

∂µ

∂ui

−
∑

j 6=i

uj

∂µ

∂uj

}

,

Hf(∂ui
, ∂uj

) = −
∂2µ

∂ui∂uj

−
2

1 +
∑n

i=1 u
2
i

{

uj

∂µ

∂ui

+ ui

∂µ

∂uj

}

for 1 ≤ i 6= j ≤ n. After combining Eq. (33) with Eq. (25) of Lemma 4.1, we
get

∂2µ

∂ui∂uj

=
−2

1 +
∑n

i=1 u
2
i

{

uj

∂µ

∂ui

+ ui

∂µ

∂uj

}

,(34)

∂2µ

∂2ui

=
−4µ

(1 +
∑n

i=1 u
2
i )

2
−

2

1 +
∑n

i=1 u
2
i

{

ui

∂µ

∂ui

−
∑

j 6=i

uj

∂µ

∂uj

}

(35)

for 1 ≤ i 6= j ≤ n.
After solving system (34)-(35) via long computation and by applying suitable

translations on ui, we obtain

µ =
1−

∑n
i=1 u

2
i

2 + 2
∑n

j=1 u
2
j

.(36)

Consequently, by Lemma 4.1, the concircular vector field v is given by

v =
1

2

n
∑

j=1

uj∂uj.(37)

Conversely, by applying (28), (32) and a straight-forward computation, we
obtain ∇V v = µV for V tangent to Sn(1). �

Similarly, we have the following result for the hyperbolic n-space Hn(−1)
with constant curvature −1.

Proposition 4.4. Let {v1, . . . , vn} be an isothermal coordinates on Hn(−1)
so that the metric tensor of Hn(−1) is

(38) g =
4

(1−
∑n

j=1 v
2
j )

2

n
∑

i=1

dv2i .

Then a vector field v on Hn(−1) is concircular if and only if, up to translations

of v1, . . . , vn, v is a gradient vector field given by v = −∇µ, where

µ =
1 +

∑n
i=1 v

2
i

2− 2
∑n

j=1 v
2
j

.(39)

Moreover, µ is exactly the function satisfying (1).

Proof. This can be done in the same way as Proposition 4.3. �
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5. Ricci solitons with concircular potential field

Next, we apply our previous results to classify Ricci solitons with concircular
potential field.

Theorem 5.1. A Ricci soliton (M, g, v, λ) on a Riemannian n-manifold (M, g)
with n ≥ 3 has concircular potential field v if and only if the following three

conditions hold:

(a) The function µ in (1) is a nonzero constant, say b;
(b) λ = b;
(c) M is an open portion of a warped product manifold I×bs+cF , where I is

an open interval with arc-length s, c is a constant, and F is an Einstein

(n − 1)-manifold whose Ricci tensor satisfies RicF = (n − 2)b2gF , gF
being the metric tensor of F .

Proof. Assume that (M, g, v, λ) is a Ricci soliton on a Riemannian n-manifold
with a concircular potential field v. Then Eq. (1) holds, which implies

(Lvg)(X,Y ) = g(∇Xv, Y ) + g(∇Y v,X) = 2µg(X,Y )(40)

for any X,Y tangent to M . Combining (2) and (40) gives

Ric(X,Y ) = (λ− µ)g(X,Y ),(41)

which shows that M is an Einstein manifold. Since n ≥ 3 and M is Einsteinian,
M has constant scalar curvature. So λ − µ is constant. Thus the function µ
is also a nonzero constant, say b. This gives statement (a). In particular, we
have

∇Xv = bX, X ∈ TM.(42)

Since µ = b is constant, (27) implies R(X, v)v = 0 for X orthogonal to v.
Hence Ric(v, v) = 0. Therefore M is Ricci-flat. Consequently, we obtain from
(41) that λ = b. This gives statement (b).

It follows from Theorem 3.1 that M is locally a warped product I ×ϕ(s) F
for some function ϕ(s) and Riemannian (n − 1)-manifold F . Moreover, from
statement (a) and the proof of Theorem 3.1 we also have ϕ′(s) = µ = b. Thus
ϕ = bs+ c for some constant c. Hence M is an open part of a warped product
manifold I ×bs+c F .

Since M is Ricci-flat, (41) yields λ = µ = b. Now, it follows from formula
(9.109) of [1, page 267] that the second factor F of I ×bs+c F is an Einstein
manifold satisfying RicF = (n− 2)b2gF .

The converse can be verified by direct computation. �

An easy consequence of Theorem 5.1 is the following.

Corollary 5.2. The only Riemannian manifold of constant sectional curvature

admitting a Ricci soliton with concircular potential field is a Euclidean space.

Proof. Follows from Proposition 4.3, Proposition 4.4 and Theorem 5.1(a). �
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Associated with the Ricci tensor on a Riemannian n-manifold, let Q denote
the (1, 1)-tensor defined by 〈Q(X), Y 〉 = Ric(X,Y ).

The Weyl conformal curvature tensor W is of type (1, 3) is defined by

(43)

W (X,Y )Z = R(X,Y )Z +
1

n
{Ric(X,Z)Y −Ric(Y, Z)X + 〈X,Z〉QY

− 〈Y, Z〉QX} −
2τ

n(n+ 1)
{〈X,Z〉Y − 〈Y, Z〉X},

where τ is the scalar curvature.
It is well-known that the Weyl conformal curvature tensor W vanishes iden-

tically when dimM = 3. A Riemannian n-manifold with n ≥ 4 is called
conformally flat if its Weyl conformal curvature tensor vanishes identically.

Another easy consequence of Theorem 5.1 is the following.

Corollary 5.3. The only conformally flat manifold of dimension ≥ 4 which

admits a Ricci soliton with concircular potential field is the Euclidean space.

Proof. It follows immediately from (43) that the only conformally flat, Einstein
manifolds of dimension ≥ 4 are Riemannian manifolds of constant curvature.
Hence we obtain this corollary from Corollary 5.2. �

The concircular curvature tensor Z of type (1, 3) on a Riemannian manifold
is defined by

(44) Z(X,Y )Z = R(X,Y )Z −
2τ

n(n+ 1)
{g(X,Z)Y − g(Y, Z)X}.

A Riemannian manifold is called concircularly flat if its concircular curvature
tensor Z vanishes identically.

Similarly, Theorem 5.1 also implies the following.

Corollary 5.4. The only concircularly flat manifold which admits a Ricci soli-

ton with concircular potential field is the Euclidean space.

6. Ricci solitons on Riemannian submanifolds arisen from

concircular vector fields

Finally, in this last section we prove some properties of Ricci solitons on
submanifolds of Riemannian manifolds equipped with a concircular vector field.
These extend some results of [8].

We make the following.

Assumption. (Nm, g̃) is a Riemannian m-manifold endowed with a concir-

cular vector field v.

For a Riemannian submanifold (Mn, g) of (Nm, g̃), we denote by vT and v⊥

the tangential and normal components on Mn of the concircular vector field v,
respectively. As before, let h,A and D denote the second fundamental form,
the shape operator and the normal connection of the submanifold, respectively.
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Theorem 6.1. A submanifold Mn in Nm admits a Ricci soliton (Mn, g, vT , λ)
if and only if the Ricci tensor of Mn satisfies

Ric(X,Y ) = (λ − µ)g(X,Y )− g̃(h(X,Y ), v⊥)(45)

for any X,Y tangent to Mn.

Proof. Let φ : Mn → Nm denote the isometric immersion. We have

v = vT + v⊥.(46)

Since v is a concircular vector field onNm, it follows from (1), (46) and formulas
of Gauss and Weingarten that

(47) µX = ∇XvT + h(X, vT )−Av⊥X +DXv⊥

for anyX tangent toMn. By comparing the tangential and normal components
from (47) we obtain

∇XvT = Av⊥X + µX.(48)

From the definition of Lie derivative and (48) we find

(LvT g)(X,Y ) = 2µg(X,Y ) + 2g̃(h(X,Y ), v⊥)(49)

for X,Y tangent to Mn. Consequently, by applying (2) and (49), we conclude
that (Mn, g, vT , λ) is a Ricci soliton if and only if

(50) Ric(X,Y ) + µg(X,Y ) + g̃(h(X,Y ), v⊥) = λg(X,Y ),

which is nothing but (45). �

A Riemannian submanifoldMn is called η-umbilical with respect to a normal
vector field η if its shape operator satisfies Aη = ϕI, where ϕ is a function on
Mn and I is the identity map.

The following two results are immediate consequences of Theorem 6.1.

Corollary 6.2. A Ricci soliton (Mn, g, vT , λ) (n ≥ 3) on a submanifold Mn

in Nm is trivial if and only if Mn is v⊥-umbilical.

Corollary 6.3. Every Ricci soliton (Mn, g, vT , λ) on a totally umbilical sub-

manifold Mn of Nm is a trivial Ricci soliton.

Following [3], the scalar curvature τ of (Mn, g) is defined to be

τ =
∑

1≤i<j≤n

K(ei, ej),(51)

where {e1, . . . , en} is an orthonormal frame of Mn.
Another easy application of Theorem 6.1 is the following.

Corollary 6.4. If (Mn, g, vT , λ) is a Ricci soliton on a minimal submanifold

Mn in Nm, then the scalar curvature τ of Mn is given by n(λ− µ)/2.
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Proof. Assume that (Mn, g, vT , λ) is a Ricci soliton on a submanifold Mn in
Nm. Then it follows from Theorem 6.1 that the Ricci tensor satisfies

Ric(X,Y ) = (λ − µ)g(X,Y )− g̃(h(X,Y ), v⊥)(52)

for X,Y tangent to Mn. If Mn is minimal, then g̃(H, v⊥) = 0. Hence (52)
gives

∑n
i=1 Ric(ei, ei) = n(λ − µ). Thus Mn has constant scalar curvature

n(λ− µ)/2. �

Corollary 6.5. Let Rn+1(c) be a Riemannian manifold of constant curvature c
equipped with a concircular vector field v. If (Mn, g, vT , λ) is a Ricci soliton on

a hypersurface of Mn of Rn+1(c), then Mn has at most two distinct principal

curvatures given by

κ1, κ2 =
nα+ ρ±

√

(nα+ ρ)2 − 4(λ− µ− (n− 1)c)

2
,(53)

where α is the mean curvature, i.e., H = αN and ρ = 〈N, v〉 with N being a

unit normal vector field.

Proof. Under the hypothesis, assume that (Mn, g, vT , λ) is a Ricci soliton on
a hypersurface of Mn of Rn+1(c), where vT denotes the tangential component
of the concircular vector field v. Let {e1, . . . , en} be an orthonormal frame on
Mn such that e1, . . . , en are eigenvectors of the shape operator AN . Then we
have

ANei = κiei, i = 1, . . . , n.(54)

From equation (7) of Gauss we obtain

(55)

Ric(X,Y ) = (n− 1)cg(X,Y ) + ng̃(h(X,Y ), H)

−

n
∑

i=1

g̃(h(X, ei), h(Y, ei)),

where g̃ denotes the metric of Rn+1(c).
It follows from (54), (55) and Theorem 6.1 that (Mn, g, vT , λ) is a Ricci

soliton if and only if we have

{(n− 1)c+ (nα− κj)κi}δij = (λ− µ)δij − ρκiδij ,(56)

where δij is the Kronecker delta. Equation (56) is equivalent to

κ2
i − (nα+ ρ)κi + λ− µ− (n− 1)c = 0, i = 1, . . . , 0,

which implies the proposition �

Remark 6.6. Results in this section extend some results obtained in [8].

Remark 6.7. Ricci solitons on Riemannian submanifolds have also been studied
in [10, 11, 12] by J. T. Cho and M. Kimura from a different viewpoint. They
proved several interesting results on Ricci solitons on submanifolds; however
their potential fields of the Ricci solitons are quite different from ours.
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