• Title/Summary/Keyword: Varying Coefficient Model

Search Result 163, Processing Time 0.026 seconds

Feature selection in the semivarying coefficient LS-SVR

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.461-471
    • /
    • 2017
  • In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

The Time-Varying Coefficient Fama - French Five Factor Model: A Case Study in the Return of Japan Portfolios

  • LIAMMUKDA, Asama;KHAMKONG, Manad;SAENCHAN, Lampang;HONGSAKULVASU, Napon
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, we have developed a Fama - French five factor model (FF5 model) from Fama & French (2015) by using concept of time-varying coefficient. For a data set, we have used monthly data form Kenneth R. French home page, it include Japan portfolios (classified by using size and book-to-market) and 5 factors from July 1990 to April 2020. The first analysis, we used Augmented Dickey-Fuller test (ADF test) for the stationary test, from the result, all Japan portfolios and 5 factors are stationary. Next analysis, we estimated a coefficient of Fama - French five factor model by using a generalized additive model with a thin-plate spline to create the time-varying coefficient Fama - French five factor model (TV-FF5 model). The benefit of this study is TV-FF5 model which can capture a different effect at different times of 5 factors but the traditional FF5 model can't do it. From the result, we can show a time-varying coefficient in all factors and in all portfolios, for time-varying coefficients of Rm-Rf, SMB, and HML are significant for all Japan portfolios, time-varying coefficients of RMW are positively significant for SM, and SH portfolio and time-varying coefficients of CMA are significant for SM, SH, and BM portfolio.

TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

  • Huang, Zhensheng;Zhang, Riquan
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-407
    • /
    • 2010
  • To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the $\chi^2$-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Robust varying coefficient model using L1 regularization

  • Hwang, Changha;Bae, Jongsik;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.1059-1066
    • /
    • 2016
  • In this paper we propose a robust version of varying coefficient models, which is based on the regularized regression with L1 regularization. We use the iteratively reweighted least squares procedure to solve L1 regularized objective function of varying coefficient model in locally weighted regression form. It provides the efficient computation of coefficient function estimates and the variable selection for given value of smoothing variable. We present the generalized cross validation function and Akaike information type criterion for the model selection. Applications of the proposed model are illustrated through the artificial examples and the real example of predicting the effect of the input variables and the smoothing variable on the output.

Varying coefficient model with errors in variables (가변계수 측정오차 회귀모형)

  • Sohn, Insuk;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.971-980
    • /
    • 2017
  • The varying coefficient regression model has gained lots of attention since it is capable to model dynamic changes of regression coefficients in many regression problems of science. In this paper we propose a varying coefficient regression model that effectively considers the errors on both input and response variables, which utilizes the kernel method in estimating the varying coefficient which is the unknown nonlinear function of smoothing variables. We provide a generalized cross validation method for choosing the hyper-parameters which affect the performance of the proposed model. The proposed method is evaluated through numerical studies.

Asian Stock Markets Analysis: The New Evidence from Time-Varying Coefficient Autoregressive Model

  • HONGSAKULVASU, Napon;LIAMMUKDA, Asama
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.95-104
    • /
    • 2020
  • In financial economics studies, the autoregressive model has been a workhorse for a long time. However, the model has a fixed value on every parameter and requires the stationarity assumptions. Time-varying coefficient autoregressive model that we use in this paper offers some desirable benefits over the traditional model such as the parameters are allowed to be varied over-time and can be applies to non-stationary financial data. This paper provides the Monte Carlo simulation studies which show that the model can capture the dynamic movement of parameters very well, even though, there are some sudden changes or jumps. For the daily data from January 1, 2015 to February 12, 2020, our paper provides the empirical studies that Thailand, Taiwan and Tokyo Stock market Index can be explained very well by the time-varying coefficient autoregressive model with lag order one while South Korea's stock index can be explained by the model with lag order three. We show that the model can unveil the non-linear shape of the estimated mean. We employ GJR-GARCH in the condition variance equation and found the evidences that the negative shocks have more impact on market's volatility than the positive shock in the case of South Korea and Tokyo.

Efficient estimation and variable selection for partially linear single-index-coefficient regression models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.69-78
    • /
    • 2019
  • A structured model with both single-index and varying coefficients is a powerful tool in modeling high dimensional data. It has been widely used because the single-index can overcome the curse of dimensionality and varying coefficients can allow nonlinear interaction effects in the model. For high dimensional index vectors, variable selection becomes an important question in the model building process. In this paper, we propose an efficient estimation and a variable selection method based on a smoothing spline approach in a partially linear single-index-coefficient regression model. We also propose an efficient algorithm for simultaneously estimating the coefficient functions in a data-adaptive lower-dimensional approximation space and selecting significant variables in the index with the adaptive LASSO penalty. The empirical performance of the proposed method is illustrated with simulated and real data examples.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.