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TESTS FOR VARYING-COEFFICIENT PARTS ON
VARYING-COEFFICIENT SINGLE-INDEX MODEL

Zhensheng Huang and Riquan Zhang

Abstract. To study the relationship between the levels of chemical pol-
lutants and the number of daily total hospital admissions for respiratory
diseases and to find the effect of temperature/relative humidity on the
admission number, Wong et al. [17] introduced the varying-coefficient
single-index model (VCSIM). As pointed out, it is a popular multivari-
ate nonparametric fitting technique. However, the tests of the model
have not been very well developed. In this paper, based on the estima-
tors obtained by the local linear technique, the average method and the
one-step back-fitting technique in the VCSIM, the generalized likelihood
ratio (GLR) tests for varying-coefficient parts on the VCSIM are estab-
lished. Under the null hypotheses the new proposed GLR tests follow the
χ2-distribution asymptotically with scale constant and degree of freedom
independent of the nuisance parameters, known as Wilks phenomenon.
Simulations are conducted to evaluate the test procedure empirically. A
real example is used to illustrate the performance of the testing approach.

1. Introduction

To study the relationship between the levels of chemical pollutants and the
number of daily total hospital admissions for respiratory diseases in Hong Kong,
to find the effect of temperature/relative humidity on the admission number,
and to examine how the effect of weather variables varies with time, Wong et
al. [17] introduced the VCSIM,

(1) Y = a0(αT
0 X) +

p∑

j=1

aj(U)Zj + ε,

where a0(·) is an unknown univariable function, α0 ∈ Rq is an unknown
parametric vector with ‖α0‖ = 1 for identifiability, X ∈ Rq, Y ∈ R and
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Z = (Z1, . . . , Zp)T ∈ Rp; a(·) = (a1(·), . . . , ap(·))T is an unknown function
vector from R to Rp, U is a covariate, which may be one entry of Z or X, or
some other covariate; the error ε is independent of (X, U,Z) with E(ε) = 0 and
Var(ε) = σ2.

The VCSIM avoids the so-called “curse of dimensionality” and is flexible
enough to cover a variety of situations. When a(·) = 0, or equivalently, there
are no predictors Z and U , it is the nonparametric single-index model (Härdle,
Hall and Ichimura [11]). When q = 1, i.e., X is a scalar, the model becomes the
varying coefficient model which has a varying intercept with a different smooth-
ing variable from that of the coefficient functions (Hastie and Tibshirani [13]).
Zhang and Li [20] and Ip, Wong, and Zhang [15] discussed the estimation and
inference for the model. When there is no predictors X, The VCSIM is the
varying coefficient model with a single smoothing variable (Hastie and Tibshi-
rani [13]). The varying coefficient model has extremely wide applications. For
example, see Hoover et al. [14] for novel applications of the model to longitudi-
nal data; Fan, Yao, and Cai [1] for applications in ecologic data analysis; Chen
and Tsay [3] and Cai, Fan, and Yao [1] for nonlinear time series applications.
If X = Z and a(u) = a, then the VCSIM is the case of the extended partially
linear single index model considered by Xia, Tong, and Li [18]. Note that in
their paper the theory covers the case of nonlinear time series as well.

Wong et al. [17] employed the local linear method, the average method and
the back-fitting technique to obtain the estimates of the unknown parameters
and the unknown functions of the model (1), and gave their asymptotic dis-
tribution. They thought that in many practical situations the partially linear
single-index (PLSI) model, which was discussed by Carroll et al. [2], is not
complex enough to capture the underlying relationship between the response
variable Y and its covariates (X,Z). They gave the VCSIM that allows the
effect of Z on Y to be varying with some covariates. After fitting the model,
another important issue arises regarding whether the varying coefficients are
in fact not varying, or whether the coefficient functions are not those given
ones. Zhang [19] discussed the testing problem for nonparametric parts on
the PLSI models by the GLR test, and the Wilks phenomenon was unveiled.
However, there has been less attention focused on the test problem for the
varying-coefficient parts on the VCSIM, i.e.,

(2) H0 : aj(u) = aj0(u)←→ H1 : aj(u) 6= aj0(u), j = 1, . . . , p.

If {aj0(·)}pj=1 are some constants, the testing problem (2) answers the question
that whether the coefficient functions are not varying; when {aj0(·)}pj=1 are
some functions, it tests whether the coefficient functions are not these given
functions.

Obviously the tools used in the inferences of the PLSI models cannot be used
directly in the testing problem (2) because of the difference in the process of
estimating the unknown parameters and the unknown functions in two models.
In this paper, we extend the generalized likelihood ratio (GLR) tests to the
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testing problem (2) for the VCSIM (1) by using the estimation method proposed
by Wong et al. [17]. This not only provides a useful tool to the frequently asked
question, but also enriches the GLR test theory. The GLR test was proposed
by Fan et al. [9] for the inference of nonparametric models. It is constructed by
replacing the maximum likelihood estimator in the maximum likelihood ratio
test by a reasonable nonparametric estimator of the coefficient function. The
GLR test is extended in many fields because of its some nice properties. Fan
and J. Zhang [7] proposed the sieve empirical likelihood ratio test to handle
the case that the distribution of the stochastic error in the model is completely
unspecified. Fan and W. Zhang [8] employed the GLR test for the spectral
density. Fan and Jiang [6] extended the GLR tests to additive models, while
Ip et al. [15] also extended the GLR test to varying-coefficient models with
different smoothing variables. Therefore, one naturally ask if the GLR test can
be applicable to the VCSIM (1). This question is solved in this paper. And it
is showed that the proposed GLR test shares the same nice properties as that
of Fan et al. [9].

The rest of this paper is organized as follows. In Section 2 we introduce
the estimating process. In Section 3 the GLR test statistic is constructed
and its asymptotic null distribution, power and minimax rate are developed.
Simulations are given in Section 4 and we provide an example of testing on a
real data set in Section 5. The proofs are given in Appendix.

2. Estimation

Suppose that (Yi,Xi, Ui,Zi)
n
i=1 is an i.i.d sample from the VCSIM (1), and

that for every j = 0, . . . , p, aj(·) has a continuous second derivative. For v in a
small neighborhood of u, aj(·) can be approximated locally by a linear function,
i.e., aj(v) ≈ aj(u) + a′j(u)(v − u) ≡ aj + bj(v − u), j = 0, . . . , p. Throughout
the article, we write Kj,hj (·) = Kj(·/hj)h−1

j , where Kj(·) is a bounded, non-
negative, compactly supported symmetric about zero and Lipschitz continuous
density function, and hj(hj > 0) is a bandwidth, j = 1, 2, 3, 4; {ti}ni=1 denotes
a vector (t1, . . . , tn)T . The estimation procedure from Wong et al. [17] is as
follows.

Step 1. Define the quasi-initial estimators of aj(·).
With given α, by using the local linear method in model (1), we define the

quasi-initial estimators of {aj(·)}pj=0 as

ǎ0(t;α) =
1
n

n∑

k=1

ã0(t, Uk; α),(3)

ǎj(u;α) =
1
n

n∑

k=1

ãj(αT Xk, u; α),(4)
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where

ã0(t, u;α) =
n∑

i=1

eT
1,2p+2

(
V T WV

)−1
ViWiiYi,

ãj(t, u;α) =
n∑

i=1

eT
j+1,2p+2

(
V T WV

)−1
ViWiiYi

for every j = 1, . . . , p. Here ej,2p+2 is the (2p + 2) × 1 unit vector with 1
at the j-th position, V = V (x0, u0) denotes an n × (2p + 2) matrix with
V T

i = (1,ZT
i , (αT Xi − t)/h1, ((Ui − u)/h2)Zi1, . . . , ((Ui − u0)/h2)Zip) as its

i-th row, where Zi = (Zi1, . . . , Zip)T and W = diag(W11, . . . , Wnn) with
Wii = K1,h1(α

T Xi − t))K2,h2(Ui − u).

Step 2. Obtain the quasi-efficient estimators of aj(·).
To decrease the variances of the quasi-initial estimators, a one-step back-fit-

ting technique is employed to obtain the quasi-efficient estimators of {aj(·)}pj=0,
we have

â0(t; α) =
n∑

i=1

eT
1,2

(
X̃T W1X̃

)−1
X̃iK3,h3(α

T Xi − t))Ỹi,(5)

âj(u; α) =
n∑

i=1

eT
j,2p

(
ŨT W2Ũ

)−1
ŨiK4,h4(Ui − u) ˜̃

Y i,(6)

where e1,2 = (1, 0)T , X̃ denotes an n × 2 matrix with X̃T
i = (1, (αT Xi −

t))/h3) as its i-th row, W1 = diag(W11, . . . , Wnn) with Wii = K3,h3(α
T Xi−t)),

Ỹi = Yi −
∑p

j=1 ǎj(Ui;α)Zij , ej,2p is the 2p × 1 unit vector with 1 at the j-th
position, Ũ denotes an n × 2p matrix with ŨT

i = (ZT
i , ((Ui − u)/h4)ZT

i ) as
its i-th row, where Zi = (Zi1, . . . , Zip)T and W2 = diag(W11, . . . , Wnn) with

Wii = K4,h4(Ui − u), ˜̃
Y i = Yi − ǎ0(αT Xi).

Step 3. Obtain the estimator of α0. The estimator α̂0 of α0 is defined as
the minimizer of the sum of squares

n∑

i=1

(
Yi − â0(αT Xi; α)−

p∑

j=1

âj(Ui; α)Zij

)2

,

subject to ‖α‖ = 1.

Step 4. Obtain the estimators of all unknown functions. With obtained α̂
from step 3, we define the estimates of {aj(·)}pj=0 as

â0(t) = â0(t; α̂0), âj(u) = âj(u; α̂0), j = 1, . . . , p.

Remark 1. When α is a known constant α0 or estimated to the order Op(n−1/2),
Wong et al. [17] discussed the asymptotic properties of the proposed quasi-
efficient estimators. They showed that the quasi-efficient estimators of the un-
known function a0(·) has the same asymptotic normality properties as the local
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linear estimator in univariate model Y = a0(X)+ε, which was discussed by Fan
and Gijbels [5]; and the quasi-efficient estimators of the coefficient functions
{aj(·)}pj=1 have the same asymptotic normality distribution as the local linear
estimators in functional-coefficient regression model Y =

∑p
j=1 aj(U)Zj + ε

(see Cai et al. [1]).

3. Generalized likelihood ratio tests

3.1. The generalized likelihood ratio tests

In this section, based on the estimation procedure in Section 2, we define
the GLR statistic and develop its asymptotic theory under the model (1), the
Wilks phenomenon is unveiled.

Assume that ε ∼ N(0, σ2) for simplicity. In fact, the normality assumptions
are not needed, which is demonstrated in Fan et al. [9] and our proofs in
Appendix.

The log-likelihood under the model (1) is

l = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(
Yi − a0(αT

0 Xi)−
p∑

j=1

aj(Ui)Zij

)2

.

Replacing the unknown functions by the estimators given in Section 2, we have

l = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(
Yi − â0(α̂T

0 Xi)−
p∑

j=1

âj(Ui)Zij

)2

.

Maximizing l over σ2 leads to the generalized likelihood under the model (1),

`n(H1) = −(n/2) log(2π/n)− (n/2) log(RSS1)− n/2,

where

RSS1 =
n∑

i=1

(
Yi − â0(α̂T

0 Xi)−
p∑

j=1

âj(Ui)Zij

)2

.

Similarly, the maximum log-likelihood under H0 can be expressed as

`n(H0) = −(n/2) log(2π/n)− (n/2) log(RSS0)− n/2,

where

RSS0 =
n∑

i=1

(
Yi − ā0(ᾱT

0 Xi)−
p∑

j=1

aj0(Ui)Zij

)2

,

and ā0(·), ᾱ0 as the estimators of a0(·) and α0 respectively under H0, where
ᾱ0 is the minimizer of the sum of squares

n∑

i=1

(
Yi −

p∑

j=1

aj0(Ui;α)Zij − â
(0)
0 (αT Xi; α)

)2

,
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subject to ‖α‖ = 1 with

â
(0)
0 (t;α) =

n∑

i=1

eT
1,2

(
X̃T W1X̃

)−1
X̃iK3,h3(α

T Xi − t)(Yi −
p∑

j=1

aj0(Ui;α)Zij),

and ā0(t) = â
(0)
0 (t; ᾱ0).

Following Fan et al. [9], the GLR statistics is defined as

(7) λn = `n(H1)− `n(H0) =
n

2
log

RSS0

RSS1
≈ n

2
RSS0 −RSS1

RSS1
,

which compares the nearly best fitting likelihood in the full model with that
under the null model. Intuitively, the null hypothesis is rejected when λn is
too large.

3.2. Asymptotic null distribution

To derive the asymptotic distribution of λn under H0, the following assump-
tions will be used. Condition A:

(A1) For every j = 0, 1, . . . , p, aj(·) has a Lipschitz continuous second deriv-
ative.

(A2) For every j = 1, 2, 3, 4, Kj(·) are some bounded, nonnegative, com-
pactly supported, symmetric about zero and Lipschitz continuous den-
sity functions.

(A3) The joint density p(t, u) of αT X and U , the marginal density p1(t)
of αT X, the marginal density p2(u) of U are compactly supported,
bounded, Lipschitz continuous and bounded away from zero by a con-
stant, and U has a bounded support Ω, αT X has a bounded support
L for α in a neighborhood of α0.

(A4) The function E(Z|αT X = t, U = u), E(ZZT |αT X = t, U = u) and
E((ZZT ) ∗ (ZZT )|αT X = t, U = u) are Lipschitz continuous, where
A ∗B is the Hadamard product of matrix A and B.

(A5) nh1h2 →∞, h1/hj → 0, h2/hj → 0, nh
3/2
j →∞, nh5

j → 0, j = 3, 4.
(A6) {εi}pi=1 are i.i.d and E|εi|4 <∞.

Theorem 1. Suppose Condition A holds. Then, under H0,

(8) σ−1
n (λn − µn + dn) d−→ N(0, 1).

Furthermore, if aj0(·) is linear or nh
9/2
4 → 0, then, under H0,

(9) rKλn ∼a χ2(rKµn),

where rK = 2µn/σ2
n, µn = p|Ω|

h4

(
K4(0) − 1

2

∫
K2

4 (t)dt
)
, σ2

n = 2p|Ω|
h4

∫ (
K4(t) −

1
2K4 ∗K4(t)

)2
dt, dn = Op

(
nh4

4 +
√

nh2
4

)
, K4 ∗K4(t) denotes the convolution of

K4.
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Remark 2. The scale constant rK and the degree of freedom rKµn of the
asymptotic chi-square distribution are independent of the nuisance parameters
or the functions σ2, α0, p(t, u), p1(t), p2(u). This phenomenon is called the
Wilks phenomenon.

Remark 3. When a0(·) = 0, the model (2) reduces to the varying-coefficient
model proposed by Hastie and Tibshirani [13]. The new GLR statistic becomes
the GLR statistic of Fan et al. [9]. Thus the two statistics share the same
asymptotic properties.

3.3. Power of generalized likelihood ratio tests

Based on the estimators in Section 2, we now consider the power of the GLR
tests.

Assume that h4 = o(n−1/5), so that the second term in the definition of dn

is of smaller order than σn (see Fan et al. [9]). As is stated later in Theorem 3,
the optimal bandwidth for the testing problem (2) is h4 = O(n−2/9), which
satisfies the condition h4 = o(n−1/5). Under these assumptions, Theorem 1
leads to an approximate level-γ test based on the GLR statistic,

φh4 = I{λn(H0)− µn > Zγσn}.
If we consider the contiguous alternative of form

H1n : aj(u) = aj0(u) + gjn(u), j = 1, . . . , p,

where gjn(u) has a Lipschitz continuous second derivative for every j, the power
of the new GLR tests can be approximated by using the following theorem.

Theorem 2. Suppose that Condition A holds and that for every j = 1, . . . , p,
nh4E(g2

jn(U)|Zj) → C1, nh4E
(
(g′′jn(U))2|Zj

) → C2, E
(
(gjn(U)Zj)4|Zj

)
=

O
(
(nh4)−3/2

)
, E

(
(g′′jn(U)Zj)4|Zj

)
= O

(
(nh4)−3/2

)
for some C1 and C2 which

are dependent of Gn = (g1n(u), . . . , gpn(u)). Then, under H1n,

(10) σ∗−1
1n (λn − µn − d1n) d−→ N(0, 1),

where σ∗21n =σ2
n+nσ−2E(

p∑
j=1

gjn(U)Zj)2 and d1n =(n/2σ2)E

(
p∑

j=1

gjn(U)Zj

)2

.

To study the optimal property of the GLR tests, we consider the class of
functions Gn = {Gn = (g1n(u), . . . , gpn(u))}, satisfying the regularity condi-
tions:

V ar
(( p∑

j=1

gjn(U)Zj

)2
)

6 M
(
E(

p∑

j=1

gjn(U)Zj)2
)2

,

nE
( p∑

j=1

gjn(U)Zj

)2
> Mn →∞
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for some constants M > 0 and Mn →∞. For a given ρ > 0, let

Gn(ρ) =
{

Gn = (g1n(u), . . . , gpn(u)) ∈ Gn : E
( p∑

j=1

gjn(U)Zj

)2 > ρ2
}

.

The maximum of the probabilities of type Π error is the given by

β(γ, ρ) = sup
Gn∈Gn(ρ)

β(γ,Gn),

where β(γ, Gn) = P (φh4 = 0 | aj(u) = aj0(u) + gjn(u), j = 1, . . . , p) is
the probability of a type Π error at the alternative H1n : aj(u) = aj0(u) +
gjn(u), j = 1, . . . , p. The minimax rate of φh4 is defined as the smallest ρn

such that:
(i) for every ρ > ρn, γ > 0, and for every β > 0, there exists a constant c,

such that β(γ, cβ) 6 β + o(1); and
(ii) for any sequence ρ∗n = o(ρn), there exist γ > 0, β > 0 such that for

any c > 0, P (φh4 = 1 | aj(u) = aj0(u), j = 1, . . . , p) = γ + o(1), and
lim infn β(γ, cρ∗n) > β.

This measures how close are the alternative that can be detected by the
new GLR tests φh4 . The rate depends on the bandwidth h4. To stress its
dependence, we write it as ρn(h4).

Theorem 3. Under Condition (A), the generalized likelihood can detect al-
ternatives with rate ρn(h4) = n−4/9, when h4 = C∗n−2/9 for some constant
C∗.

Remark 4. The GLR tests are asymptotically optimal in terms of rates of
convergence for an ordinary nonparametric hypothesis testing according to the
formulations of Lepski and Spokoiny [16]. When p = 1, Z1 = 1 and a0(·) = 0,
the model (1) becomes an ordinary nonparametric model, in which Lepski and
Spokoiny [16] proved the optimal rate to be n−4/9 for testing H0. Therefore,
the new GLR test is optimal in this sense that it achieves the optimal rate of
convergence.

4. Simulations

In this section, the purpose of the simulations is twofold: demonstrating
the Wilks phenomenon, and the power of the proposed GLR test. The effect
of the error ε distribution on the performance of the test is also investigated.
Numerical results show that the new GLR test works well. Throughout this
section, the Epanechnikov kernel is used.

We consider the following model:

(11) Y = a0(α1X1 + α2X2) + a1(U)Z1 + a2(U)Z2 + ε,

and testing the null hypothesis

H0 : a1(u) = sin(6πu), a2(u) = cos(6πu),
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Figure 1. The empirical distributions of the GLR statistic
under H0 in several cases. (a) n = 400, c=0.5 (left triplet)
and 1 (right triplet); (b) n = 400, c=1.5 (left triplet) and 2
(right triplet); (c) n = 800, c=0.5 (left triplet) and 1 (right
triplet); (d) n = 800, c=1.5 (left triplet) and 2 (right triplet);
where F (x) = N(0, 1) (solid curve), t(6) (dashed curve) and
U [−0.5, 0.5] (dotted curve).

where a0(x) = 2 exp(−x2), (X1, X2, U, Z1, Z2)T ∼ U([−0.5, 0.5]5), α1 = 1/
√

5,
α2 = 2/

√
5, ε ∼ F (x), which is a distribution function, and ε is independent of

(X1, X2, U, Z1, Z2).
In this section, in order to satisfy the order requirements of the bandwidths

in Condition (A5) and Theorem 3, and for simplicity, we take h1 = h2 =
cn−1/3, h3 = h4 = cn−2/9, where c is some positive constant and n is the size
of the sample.

To show the Wilks phenomenon, the error distribution F (x) is taken as
N(0, 1), t(5) and U [−0.5, 0.5] respectively. Sample sizes n = 400 and 800 from
the model (11) are used under H0 with every F (x). To study the effect of the
bandwidth on the new GLR test, c takes on the values 0.5, 1, 1.5 and 2. For
each combination of (c, n, F ), we simulate 300 replications for the corresponding
model at each run.

The empirical distributions of the GLR statistics λn are shown in Figure 1(a-
d) in several cases under H0.

From Figure 1, we can see that the nuisance function F (x) has less effect on
the empirical distribution of the GLR statistic under H0, since the lines under
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Figure 2. The empirical distributions (solid curve) of the
scaled GLR statistic under H0 and the chi-square distribu-
tions (dotted curve) with degrees of freedom of d0: (a) n =
400, c = 0.5, F (x) = N(0, 1), (b) n = 800, c = 2, F (x) = t(5).

different F (x)′s are very close to one another. We also see that the empirical
distribution of the GLR statistic under H0 are dependent of the bandwidth.

To check whether the normalized statistic rKλn follows asymptotically the
chi-square distribution, we equate the mean and variance of the scaled statistic
rKλn to the corresponding mean and variance of a chi-square random variable,
say χ2(d0), with degrees of freedom d0. This results in rK = 2µ0/σ2

0 and d0 =
2µ2

0/σ2
0 with µ0 and σ2

0 the simulated mean and variance of λn. We calculate
further the empirical distribution of the scaled GLR statistic, and compare it
with the χ2(d0) distribution based on 300 replications from the model (11)
under H0 with every F (x) and every c. Here we only show two simulated
results in Figure 2, as the empirical distribution do not depend sensitively on
the error distribution F (x).

From Figure 2, we can see that the empirical distribution of the scaled GLR
statistic and the χ2(d0) distribution are nearly the same. This demonstrates
empirically that the null distribution of the GLR statistic can be satisfactorily
approximated by the χ2-distribution.

For the power assessment, we evaluate the power for a sequence of alternative
models indexed by θ,

(12)
H1θ : a1(u) = (1 + θ) sin(6πu),

a2(u) = (1 + θ) cos(6πu), θ = 0.0, 0.1, 0.2, . . . ,

ranging from the null model to reasonably far away from it. The above func-
tional forms were also used in Fan and Jiang [6], Fan and W. Zhang [8] and Ip et
al. [15]. Figure 3 reports the differences between the null and the alternatives
in (12).

For each given value of γ (0.05 or 0.10), the critical values of our test are
calculated by the corresponding χ2(rKµn), where rK and µn are given by
Theorem 1 with h4 = n−2/9 and | Ω |= 1. The sample size is n = 200. The
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Figure 3. The difference between the null and the alterna-
tives: (a) a1(u) = (1+θ) sin(6πu); (b) a1(u) = (1+θ) cos(6πu).
(— θ = 0; ∗ ∗ θ = 0.2; · · · θ = 0.4;−− θ = 0.8;×× θ = 1.0).

parameter θ is related to the separation distance between the null and the
alternative hypotheses. Note that when θ = 0, the alternative is the same as
the null hypothesis, so that the power should approximately be 0.05 (or 0.10) at
the 0.05 (or 0.10) significance level γ. When θ increases, the alternative moves
further away from the null hypothesis. One would expect the rejection rates of
the null hypothesis to get higher and higher, which is evidenced in Table 1.

From Table 1 we see a surprisingly stable performance of the tests for dif-
ferent error distributions with the characteristics of heavy tail, symmetric and
asymmetric densities. The numerical results here suggest that the GLR tests
not only have high power for differentiating the null and the smoothing al-
ternatives (12), but also have robustness against error distributions to some
extent.

Table 1. Power of the GLR tests under different error distributions

α Error distribution\θ 0.0 0.4 0.8 1.2 1.4
0.05 N(0,1) 0.052 0.563 0.946 0.991 1.000

t(5) 0.056 0.509 0.965 0.999 1.000
χ2(5) 0.053 0.587 0.977 0.983 1.000

0.10 N(0,1) 0.096 0.784 0.996 0.999 1.000
t(5) 0.092 0.606 0.976 0.999 1.000

χ2(5) 0.099 0.677 0.970 0.982 1.000

To provide more information on the power, we also consider a simulation study
for the behaviour of power as the sample size n changes. No loss of generaliza-
tion and expositional purpose, here the error distribution F (x) and the given
significance level γ are taken as N(0, 1) and 0.05, respectively. The simulation
results are reported in Table 2, which show that with the sample size n increas-
ing the power of the GLR tests for the alternative sequence in (12) becomes
higher and higher. This in turn suggests that the proposed GLR test is very
efficient.
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Table 2. Power of the GLR tests under different sample sizes

n\ θ 0.0 0.4 0.8 1.2 1.4
100 0.043 0.482 0.896 0.964 1.000
150 0.053 0.554 0.925 0.980 1.000
200 0.052 0.563 0.946 0.991 1.000
250 0.052 0.594 0.956 1.000 1.000
300 0.050 0.665 0.986 1.000 1.000

5. Real data example

We use the proposed GLR tests on an environmental data set. The data
set used here consists of daily measurements of pollutants and other environ-
mental factors in New Territories East in Hong Kong between January 1, 2000
and August 31, 2001. We consider the five pollutants and two environmen-
tal factors, i.e., sulphur dioxide (in g/m3) X1, nitrogen dioxide (in g/m3) X2,
nitrogen oxide (in g/m3) X3, respirable suspended particulate (in g/m3) X4,
and ozone (in g/m3) X5; temperature (in Celsius) Z1, relative humidity (in
percent ratio) Z2. Wong et al. [17] studied the relationship between the levels
of the above pollutants and the number of daily total hospital admissions (Y )
for respiratory diseases in the data set. To avoid the curse of dimensionality,
they analyzed the data set via the VCSIM,

(13) Y = a0(α1X1 + α2X2 + α3X3 + α4X4 + α5X5) + a1(t)Z1 + a2(t)Z2 + ε.

They suggested that the effect of two environmental factors (Z1, Z2) on the
respiratory disease patients (Y ) has a varying rate, and pointed out further
that the rate is varying with the time t. The VCSIM performs fairly well in
the environmental data set.

We now focus on the model diagnostic problems. Specifically we check
whether the coefficient functions a1(·), a2(·) in the model (13) are not varying
with the time t in the environmental data set, namely whether the partially
linear single-index model (PLSIM) is consistent with the data. The PLSIM has
the form

(14) Y = a0(α1X1 + α2X2 + α3X3 + α4X4 + α5X5) + a1Z1 + a2Z2 + ε.

To answer this question, we now use our GLR statistic to test whether the
null PLSIM (14) holds against the alternative VCSIM (13). To compute
the p value of the test statistic, we need to find the null distribution of the
GLR statistic λn. This can be estimated by the conditional bootstrap method,
which was used in Fan et al. [6]. In this section we will use the bandwidths
ĥopt = (0.1180, 0.1180, 0.2405, 0.2405)T , and take the Epanechnikov kernel.
Our interest is to test whether the PLSIM (14) is adequate for the environ-
mental data set. To see this, the P-value for the tests are summarized in
Table 3, which provides stark evidence that the VCSIM (13) is appropriate for
this environmental data set at the 0.01 significance level.
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Table 3. P-value of the GLR tests under four different bandwidths

Bandwidth 4
5 ĥopt ĥopt

5
4 ĥopt 2ĥopt

GLR statistic 32.8046 30.3271 23.8011 18.3422
P -value 0.0040 0.0030 0.0000 0.0080

Based on the above analysis, we now use our testing approach to check
whether there is any covariate that can be deleted from the VCSIM (13).
Firstly, to examine whether the temperature (Z1) affects the number of daily
total hospital admissions (Y ) for respiratory diseases in the environmental data
set, we consider the testing hypothesis H0 : Y = a0(α1X1 + α2X2 + α3X3 +
α4X4 + α5X5) + a2(t)Z2 + ε against H1 : Y = a0(α1X1 + α2X2 + α3X3 +
α4X4 +α5X5)+a1(t)Z1 +a2(t)Z2 + ε. As a result, under the bandwidth 2ĥopt

the GLR statistic is λn = 38.7325 and the p value is close to 0, which strongly
rejects the null hypothesis. Therefore, the variable temperature (Z1) is signifi-
cant at the significant level 0.01. Finally by the same token, we can show that
the variable relative humidity (Z2) plays a significant role in determining the
respiratory disease patients (Y ) as well.

Appendix

Lemma. Suppose Conditions (A1 − A6) in Section 3.2 hold. Then uniformly
in u ∈ Ω and t ∈ L,

(15)

â0(t)− a0(t) =
(
R0(t) + e0(t)

)
(1 + op(1));

âj(u)− aj(u) =
(
Rj(u) + ej(u)

)
(1 + op(1)), j = 1, . . . , p;

ā0(t)− a0(t) =
(
R0(t) + e0(t)

)
(1 + op(1));

α̂0 − α0 = Op(n−1/2); ᾱ0 − α0 = Op(n−1/2),

where R0(t) = 1
2µ2(K3)a′′0(t)h2

3, e0(t) = 1
n

∑n
k=1 p−1

1 (t)K3,h3(α
T
0 Xk − t)εk,

Rj(u) = 1
2µ2(K4) × a′′j (u)h2

4, ej(u) = s−1
j (u) 1

n

∑n
k=1 ZkjK4,h4(Uk − u)εk,

µ2(Kj) =
∫

t2Kj(t), sj(u) = E(Z2
j |U = u)p2(u).

The proof of Lemma can be completed using the methods similar to that
used in Wong et al. [17].

Proof of Theorem 1. Note that, under H0,
1
2
(RSS0 −RSS1)(16)

=
1
2

n∑

i=1

(
Yi − a0(αT

0 Xi)−
p∑

j=1

aj0(Ui)Zij + a0(αT
0 Xi)

+
p∑

j=1

aj0(Ui)Zij − â0(α̂T
0 Xi)−

p∑

j=1

âj0(Ui)Zij

)2



398 ZHENSHENG HUANG AND RIQUAN ZHANG

− 1
2

n∑

i=1

(
Yi − ā0(ᾱT

0 Xi)−
p∑

j=1

aj0(Ui)Zij

)2

=
1
2

n∑

i=1

(
εi + a0(αT

0 Xi)− â0(αT
0 Xi) + â0(αT

0 Xi)

− â0(α̂T
0 Xi) +

p∑

j=1

(aj0(Ui)− âj0(Ui))Zij

)2

− 1
2

n∑

i=1

(
εi + a0(αT

0 Xi)− ā0(αT
0 Xi) + ā0(αT

0 Xi)− ā0(ᾱT
0 Xi)

)2

= I1 + I2 − I3 − I4 + I5 − I6 − I7 + I8 + I9 − I10 − I11 − I12 − I13 + I14,

where

I1 =
1
2

n∑

i=1

(
a0(αT

0 Xi)− â0(αT
0 Xi)

)2

=
1
2

n∑

i=1

(
R0(α̂T

0 Xi) + e0(α̂T
0 Xi)

)2

(1 + oP (1)),

I2 =
1
2

n∑

i=1

(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)2
, I3 =

n∑

i=1

(
ā0(αT

0 Xi)− ā0(ᾱT
0 Xi)

)
εi,

I4 =
1
2

n∑

i=1

(
ā0(αT

0 Xi)− ā0(ᾱT
0 Xi)

)2
, I5 =

n∑

i=1

(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)
εi,

I6 = −
n∑

i=1

( p∑

j=1

(aj0(Ui)− âj0(Ui))Zij

)
εi

=
n∑

i=1

( p∑

j=1

(Rj(Ui) + ej(Ui))Zij

)
εi(1 + oP (1)),

I7 =
n∑

i=1

(
a0(αT

0 Xi)− â0(αT
0 Xi)

)(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)

=
n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)
(1 + oP (1)),

I8 =
n∑

i=1

(
a0(αT

0 Xi)− â0(αT
0 Xi)

)( p∑

j=1

(aj0(Ui)− âj0(Ui))Zij

)

=
n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)( p∑

j=1

(Rj(Ui) + ej(Ui))Zij

)
(1 + oP (1)),
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I9 =
n∑

i=1

(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)( p∑

j=1

(aj0(Ui)− âj0(Ui))Zij

)

=
n∑

i=1

(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)( p∑

j=1

(Rj(Ui) + ej(Ui))Zij

)
(1 + oP (1)),

I10 =
1
2

n∑

i=1

(
a0(αT

0 Xi)− ā0(αT
0 Xi)

)2

=
1
2

n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)2

(1 + oP (1)),

I11 =
n∑

i=1

(
a0(αT

0 Xi)− â0(αT
0 Xi)

)
εi

=
n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)
εi(1 + oP (1)),

I12 =
n∑

i=1

(
ā0(αT

0 Xi)− a0(αT
0 Xi)

)(
ā0(ᾱT

0 Xi)− ā0(αT
0 Xi)

)

=
n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)(
ā0(ᾱT

0 Xi)− ā0(αT
0 Xi)

)
(1 + oP (1)),

I13 =
n∑

i=1

(
a0(αT

0 Xi)− ā0(αT
0 Xi)

)
εi

=
n∑

i=1

(
R0(αT

0 Xi) + e0(αT
0 Xi)

)
εi(1 + oP (1)),

I14 =
1
2

n∑

i=1

( p∑

j=1

(aj0(Ui)− âj0(Ui))Zij

)2

=
1
2

n∑

i=1

( p∑

j=1

(Rj(Ui) + ej(Ui))Zij

)2

(1 + oP (1)).

By using the same methods as in the proof of (A.2-A.5) in Zhang [19], we have

(17)
I1 − I10 = op(1), I2 − I4 = op(h

−1/2
3 ), I5 − I3 = op(h

−1/2
3 ),

I7 − I12 = op(h
−1/2
3 ), I11 − I13 = Op

( 1√
nh3

+
√

nh2
3

)
.

Conjoining (16) with (17), we have

1
2
(RSS1 −RSS0) = I6 + I8 + I9 + I14 + op(h

−1/2
3 )

(18)
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=

(
7∑

k=1

Qk −Q8 −Q9 +
14∑

k=10

Qk

)
(1 + op(1)) + op(h

−1/2
3 ),(19)

where

Q1 =
1
2

n∑

i=1

( p∑

j=1

R2
j (Ui)Z2

ij

)
, Q2 =

1
2

n∑

i=1

( p∑

j=1

e2
j (Ui)Z2

ij

)
,

Q3 =
n∑

i=1

( p∑

j=1

(Rj(Ui)ej(Ui)Z2
ij

)
, Q4 =

1
2

n∑

i=1

p∑

j=1

p∑

j′ 6=j,j′=1

Rj(Ui)Rj′(Ui)ZijZij′ ,

Q5 =
1
2

n∑

i=1

p∑

j=1

p∑

j′ 6=j,j′=1

Rj(Ui)ej′(Ui)ZijZij′ ,

Q6 =
1
2

n∑

i=1

p∑

j=1

p∑

j′ 6=j,j′=1

Rj′(Ui)ej(Ui)ZijZij′ ,

Q7 =
1
2

n∑

i=1

p∑

j=1

p∑

j′ 6=j,j′=1

ej(Ui)ej′(Ui)ZijZij′ ,

Q8 =
n∑

i=1

( p∑

j=1

(Rj(Ui)Zij

)
εi, Q9 =

n∑

i=1

( p∑

j=1

(ej(Ui)Zij

)
εi,

Q10 =
n∑

i=1

( p∑

j=1

(R0(αT
0 Xi)Rj(Ui)Zij

)
, Q11 =

n∑

i=1

( p∑

j=1

(R0(αT
0 Xi)ej(Ui)Zij

)
,

Q12 =
n∑

i=1

( p∑

j=1

(e0(αT
0 Xi)Rj(Ui)Zij

)
, Q13 =

n∑

i=1

( p∑

j=1

(e0(αT
0 Xi)ej(Ui)Zij

)
,

Q14 =
n∑

i=1

(
â0(αT

0 Xi)− â0(α̂T
0 Xi)

)( p∑

j=1

(Rj(Ui) + ej(Ui))Zij

)
.

Next we discuss Qk, k = 1, . . . , 14, respectively.
(1) By using the Strong Law of Large Number Theory, we have

(20)

Q8 =
n∑

i=1

( p∑

j=1

(Rj(Ui)Zij

)
εi =

p∑

j=1

h2
4µ2(K4)

2

n∑

i=1

a′′j0(Ui)Zijεi = Op(
√

nh2
4).

Similar to Q8, we have

Q1 =
1
2

n∑

i=1

( p∑

j=1

(Rj(Ui)Z2
ij

)
=

p∑

j=1

h4
4µ

2
2(K4)
8

n∑

i=1

(
a′′j0(Ui)

)2
Z2

ij = Op(
√

nh2
4),

(21)
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Q4 =
1
2

n∑

i=1

p∑

j=1

p∑

j′ 6=j,j′=1

Rj(Ui)Rj′(Ui)ZijZij′

=
n∑

i=1

p∑

j′ 6=j,j′=1

h4
4µ

2
2(K4)
8

n∑

i=1

a′′j0(Ui)a′′j′0(Ui)ZijZij′ = Op(
√

nh4
4).(22)

Next we discuss Q3. Noting that uniformly in k

1
n

n∑

i=1

a′′j0(Ui)Z2
ij

sj(Ui)
K4,h4(Ui − Uk) = a′′j0(Uk)(1 + op(1)).

Furthermore, by interchanging summation signs and the Strong Law of Large
Number Theory, it can be shown
(23)

Q3 =
p∑

j=1

n∑

k=1

h2
4µ2(K4)

2
Zkjεk

( 1
n

n∑

i=1

a′′j0(Ui)Z2
ij

sj(Ui)
K4,h4(Ui − Uk)

)
= Op(

√
nh2

4).

Similar to Q3, we have

(24) Q5 = Op(
√

nh2
4), Q6 = Op(

√
nh2

4).

(2) As to Q7, Q2, Q9, by using a similar method as in the proof of T9, T5 and
T2 in Ip et al. [15], we have

(25) Q7 = Op

(
1 +

(
nh

3/2
4

)−1 +
(
nh2

4

)−1/2
)
,

Q2 =
p∑

j=1

1
2n

n∑

i,k=1,i 6=k

ZkjZijεkεi

sj(Uk)h4

∫
K4(t)K4

(
t− Ui − Uk

h4

)
dt

+
p∑

j=1

σ2|Ω|
2h4

∫
K2

4 (t)dt + Op

(
1 +

(
nh

3/2
4

)−1 +
(
nh2

4

)−1 +
(
nh2

4

)−1/2
)
,(26)

Q9 = σ2 pK4(0)|Ω|
h4

+ Op

((
nh2

4

)−1/2
)

+
p∑

j=1

1
n

n∑

i=1

n∑

k=1,k 6=i

ZkjZij

sj(Ui)
K4,h4(Uk − Ui)εkεi.(27)

(3) Now we consider Q10, Q11, Q12, Q13. By using the Strong Law of Large
Number Theory, we have
(28)

Q10 =
p∑

j=1

µ2(K3)µ2(K4)(h3h4)2

4

n∑

i=1

a′′0(αT
0 Xi)a′′j0(Ui)Zij = Op

(
n(h3h4)2

)
.
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As to Q11, using a similar method as in the proof of Q3, we have

Q11 =
n∑

i=1

p∑

j=1

1
2µ2(K3)a′′0(αT

0 Xi)h2
3

sj(Ui)
1
n

n∑

k=1

K4,h4(Ui − Uk)ZkjZijεk(29)

=
p∑

j=1

n∑

k=1

µ2(K3)h2
3

2
Zkjεk

1
n

n∑

i=1

a′′0(αT
0 Xi)Zij

sj(Ui)
K4,h4(Ui − Uk)

= Op

(√
nh2

3

)
.

Similar to Q11, we have

(30) Q12 = Op

(√
nh2

4

)
.

As to Q13, we only discuss Q131, one of the p terms in the sum of Q13, i.e.,
j = 1. The other terms can be obtained by similar process to that for Q131.
Note that

Q131

(31)

=
n∑

i=1

Zi1

n2s1(Ui)p1(αT
0 Xi)

( n∑

k=1

K3,h3(α
T
0 Xk − αT

0 Xi)εk

)

×
( n∑

m=1

Zm1K4,h4(Um − Ui)εm

)

=
1
n2

n∑

i=1

n∑

k=1

n∑
m=1

Zi1Zm1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)K4,h4(Um − Ui)εmεk

=
1
n2

n∑

i=1

n∑

k=1

Zi1Zk1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)K4,h4(Uk − Ui)ε2
k

+
1
n2

n∑

i=1

n∑

k=1

n∑

m=1,m6=k

Zi1Zm1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)

×K4,h4(Um − Ui)εmεk

≡ Q1311 + Q1312,

and uniformly in k,

1
n

n∑

i=1

Zi1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)K4,h4(Uk − Ui) = Op

(
1 +

(
nh3h4

)−1/2
)
,

we have, by interchanging summation signs and the Strong Law of Large Num-
ber Theory,

Q1311 =
1
n

n∑

k=1

Zk1ε
2
k

( 1
n

n∑

i=1

Zi1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)K4,h4(Uk − Ui)
)

(32)
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= Op

(
1 +

(
nh3h4

)−1/2
)
.

We may decompose Q1312, it can be decomposed into three parts:

Q1312 =
1
n2

n∑

i=1

n∑

k=1,k 6=i

Zi1Zk1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)K4,h4(0)εiεk

+
1
n2

n∑

i=1

n∑

m=1,m6=i

Zi1Zm1

s1(Ui)p1(αT
0 Xi)

K4,h4(Um − Ui)K3,h3(0)εiεm

+
1
n2

n∑

i,m,k=1,i 6=m,i 6=k,m 6=k

Zi1Zm1

s1(Ui)p1(αT
0 Xi)

K3,h3(α
T
0 Xk − αT

0 Xi)

×K4,h4(Um − Ui)εmεk

≡ Q13121 + Q13122 + Q13123.(33)

Obviously, using a similar method as in the proof of (3.54) in Fan and Gijbels
[5], we have

Q13121 = Op

((
n2h3h

2
4

)−1/2
)
, Q13122 = Op

((
n2h2

3h4

)−1/2
)
,

Q13123 = Op

((
nh3h4

)−1/2
)
.

Furthermore

(34) Q1312 = Op

((
n2h3h

2
4

)−1/2 +
(
n2h2

3h4

)−1/2 +
(
nh3h4

)−1/2
)
.

Conjoining (31),(32),(33) with (34), we have

Q131 = Op

(
1 +

(
n2h3h

2
4

)−1/2 +
(
n2h2

3h4

)−1/2 +
(
nh3h4

)−1/2
)
.(35)

Furthermore, we have

(36) Q13 = Op

(
1 +

(
n2h3h

2
4

)−1/2 +
(
n2h2

3h4

)−1/2 +
(
nh3h4

)−1/2
)
.

As to Q14, using an argument similar to that for (A.3−A.5) in Zhang [19] and
direct computation, we have

(37) Q14 = Op

(
h
−1/2
3

)
.

Conjoining (19)-(36) with (37), we have

1
2
(RSS0 −RSS1) =

pσ2|Ω|
h4

(
K4(0)− 1

2

∫
K2

4 (t)dt
)

+
p∑

j=1

1
n

n∑

i,k=1,i6=k

ZkjZijεkεi

sj(Uk)

(
K4,h4(Ui − Uk)

− 1
2
K4,h4 ∗K4,h4(Ui − Uk)

)
+ Op

(
nh4

4 +
√

nh2
4

)
,

= σ2µn + dn + Wn,(38)
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where

Wn =
p∑

j=1

1
n

n∑

i,k=1,i 6=k

ZkjZijεkεi

sj(Uk)

(
K4,h4(Ui − Uk)− 1

2
K4,h4 ∗K4,h4(Ui − Uk)

)
.

Write

w(i, k) =
1
n

p∑

j=1

ZkjZijεkεi

sj(Uk)

(
K4,h4(Ui − Uk)− 1

2
K4,h4 ∗K4,h4(Ui − Uk)

)
.

Then, Wn can be rewritten as

(39) Wn =
n∑

i,k=1,i 6=k

w(i, k).

Obviously, E(Wn) = 0. Next we calculate the variance of Wn.
Noting that {εi}ni=1 are independent with E(εi) = 0, we have

Var(Wn)

= 2n(n− 1)E
(
w(1, 2)

)2

= 2σ4E

(
p∑

j=1

Z2jZ1j

sj(U2)

(
K4,h4(U2 − U1)− 1

2
K4,h4 ∗K4,h4(U2 − U1)

))2

(1 + o(1))

≡ (Λ1 + Λ2)(1 + o(1)),

where

Λ1 = 2σ4E

(
p∑

j=1

Z2
2jZ

2
1j

s2
j (U2)

(
K4,h4(U2 − U1)− 1

2
K4,h4 ∗K4,h4(U2 − U1)

)2
)

,

Λ2 = 2σ4E

(
p∑

j=1

p∑

j′=1,j′ 6=j

Z2jZ1jZ2j′Z1j′

sj(U2)sj′(U2)

(
K4,h4(U2 − U1)− 1

2
K4,h4 ∗K4,h4(U2 − U1)

)2

)
,

It is readily shown that Λ1 = σ4σ2
n, Λ2 = O(1). Therefore, we have Var(Wn) =

σ4σ2
n(1 + O(1)), which implies that Wn = Op(h

−1/2
4 ). Furthermore, by the

definition of RSS0, we have, by using a similar argument as Qk, k = 2, 3, 8, 9,

RSS1

n
=

RSS0

n
− 2σ2µn

n
− Wn

n
+ OP

(
(n−1h4

4)
1/2

)
+ Op(h4

4)(40)

= σ2(1 + op(1)).

Therefore, by (7), (38) and (40), λn can be rewritten as

λn = µn − dn + Wn/σ2 + op(h
−1/2
4 ), i.e.,(41)

λn − µn + dn = Wn/σ2 + op(h
−1/2
4 ).

As to the asymptotic distribution of Wn, using a similar argument as in Page
185 in Fan et al. [9] and applying Proposition 3.2 in de Jong [4], we get

σ−2σ−1
n Wn

d−→ N(0, 1),
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which implies that, by (41),

σ−1
n (λn − µn + dn) d−→ N(0, 1).

This completes the proof of Theorem 1. ¤

Proof of Theorem 2. Note that, under H1n, uniformly u ∈ Ω

âj(u)− aj0(u)− gjn(u) = (Rj(u) + Rjg(u) + ej(u))(1 + oP (1)),

where Rjg(u) = 1
2µ2(K4)g′′jn(u)h2

4, then, and by using the similar argument
of Theorem 1, we can easily complete the rest of the proof, so we omit the
details. ¤

Proof of Theorem 3. The argument used here is similar to that for Theorem
8 of Fan et al. [9], here we only express its sketch. Under H1n and under
h4 = C∗n−2/9, we have

(42) −λnσ2 = −µnσ2 −Wn + d1n −
√√√√nE

( p∑

j=1

gjn(U)Zj

)2 + op(h
−1/2
4 ),

uniformly in Gn ∈ Gn. Thus, by definition,

β(γ, Gn) = P
(
σ−1

n (−λn + µn) > Zγ

)

= P
(
σ−1

n σ−2(−Wn + dn − d1n −
√

2d1n) > Zγ

)

≡ P1n + P2n,

where

P1n = P
(
σ−1

n σ−2(−Wn) + n1/2h
5/2
4 b1n + nh

9/2
4 b2n

−nh
1/2
4 b3n > Zγ , | b1n |6 M, | b2n |6 M

)
,

P2n = P
(
σ−1

n σ−2(−Wn) + n1/2h
5/2
4 b1n + nh

9/2
4 b2n

−nh
1/2
4 b3n > Zγ , | b1n |> M, | b2n |> M

)
,

and

b1n =
(
n1/2h

5/2
4 σn

)−1
Op

(
n1/2h2

4

)
,

b2n =
(
nh

9/2
4 σn

)−1
Op

(
nh4

4

)
,

b3n =
1
2
(
h

1/2
4 σnσ2

)−1
E

( p∑

j=1

gjn(U)Zj

)2(1 + op(1)).

When h4 6 C
−1/2
0 n−1/4, we have n1/2h

5/2
4 > C0nh

9/2
4 , n1/2h

5/2
4 → 0, nh

9/2
4 →

0. Thus, for h4 → 0 and nh4 → ∞, we can show that β(γ, ρ) → 0 only when
nh

1/2
4 ρ2

n → ∞. It implies that ρ2
n = n−1h

−1/2
4 and the possible minimum

value of ρn in this setting is n−7/16. When nh4
4 → ∞, for any δ > 0, we can
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find a constant M > 0, such that P2n < δ/2, uniformly in Gn ∈ Gn. Then
β(γ, ρ) 6 δ/2 + P1n.

Note that supGn(ρ) P1n → 0 only when

∆ = nh
9/2
4 M − nh

9/2
4 ρ2 → −∞.

∆ attains the minimum value − 8
9 (9M)−1/8nρ9/4 at h4 = (ρ2/(9M))1/4. Now

simple algebra shows that in this setting the corresponding minimum value of
ρn is n−4/9 with h4 = C∗n−2/9 for some constant C∗. ¤
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