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Abstract

In this paper we propose a robust version of varying coefficient models, which
is based on the regularized regression with L1 regularization. We use the iteratively
reweighted least squares procedure to solve L1 regularized objective function of vary-
ing coefficient model in locally weighted regression form. It provides the efficient com-
putation of coefficient function estimates and the variable selection for given value of
smoothing variable. We present the generalized cross validation function and Akaike
information type criterion for the model selection. Applications of the proposed model
are illustrated through the artificial examples and the real example of predicting the
effect of the input variables and the smoothing variable on the output.

Keywords: Akaike’s information criterion, generalized cross validation function, itera-
tively reweighted least squares procedure, L1-regularization, locally weighted regression,
smoothing variable, variable selection, varying coefficient model.

1. Introduction

The varying coefficient (regression) model (VCM) is flexible and powerful for modeling
the dynamic changes of regression coefficients, which was firstly introduced by Hastie and
Tibshirani (1993). VCM is known to be a useful extension of the linear regression model,
in which the regression coefficients are not fixed as constants but are allowed to change
with the values of certain variables (smoothing variables, environmental variables). Since
VCM inherits the simplicity and the easy interpretation of the linear regression models, it
therefore gains the popularity in statistical literature in recent years. The introductions and
current research areas of VCM are found in Hastie and Tibshirani (1993), Hoover et al .
(1998), Fan and Zhang (2008) and Shim and Hwang (2015). The problems of estimating
coefficient functions and analyzing them appropriately have been studied in many areas of
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applied Statistics. Most of this attention of estimating coefficient functions has been focused
on using kernel smoothing techniques. Fan and Zhang (2008) gave good reviews of VCM
and discussed three approaches in estimating the coefficient functions: kernel smoothing,
polynomial splines and smoothing splines. Wang and Xia (2009) proposed to combine the
local polynomial smoothing (Fan and Gijbels, 1996) and the LASSO (least absolute shrinkage
and selection operator; Tibshirani, 1996) for efficient estimation of VCM. There are some
possibilities in constructing VCM. One is to set all regression coefficients be functions of a
single input variable or multiple input variables. Another is to set each regression coefficient
be function of different variables. There are various extensions of VCM ( Park et al ., 2015).

We denote the smoothing variable by ui and an input vector by xi ∈ Rdx and an output
corresponding to xi and ui by yi, where i = 1, 2, · · · , n. Let f(ui,xi) be the regression
function of the output given ui and xi, which can be expressed as the form of VCM as
follows:

f(ui,xi) = X ′iβ(ui), i = 1, 2, · · · , n, (1.1)

where X ′i = (1,x′i) and β(ui) = (β0(ui), β1(ui), · · · , βdx(ui))
′ is a (dx + 1) × 1 coefficient

function (smooth function) vector given ui. Coefficient functions are usually estimated by
the locally weighted regression (Cleveland and Susan, 1988). Generally, all the input vari-
ables may not much affect the outputs so that some β(ui)’s may be 0’s in true regression
model. Lots of variable selection techniques such as the best-subset selection, stepwise se-
lection, and Bootstrap procedures (Sauerbrei and Schumacher, 1992) for linear regression
models have been proposed. Recently the LASSO has been proposed. By shrinking some
regression coefficients to 0, this method provides the selection of important variables and
the estimation of regression coefficients simultaneously. Huang et al . (2005) proposed the
regularization and the variable selection approach using the LASSO (Tibshirani, 1996). Hu
and Rao (2010) proposed a weighted least squares method with sparse regularization to fit
censored regression models with high-dimensional input variables.

We consider the regularized regression with L1 norm, which is known to have the sparsity
on estimation of regression coefficients (Williams, 1995). We use the iteratively reweighted
least squares (IRWLS) procedure to solve the regularized log -likelihood function with L1
norm of regression. It provides the efficient computation including variable selection.

The remainder of the paper is organized as follows. In Section 2 we briefly review VCM.
In Section 3 we propose IRWLS procedure to regularized estimation for VCM with L1
regularization. In Section 4 we illustrate the applications of the proposed model to artificial
data sets and a real data set. Section 5 gives the concluding remarks.

2. Varying coefficient model

For given data set (yi, ui,xi)
n
i=1, where yi ∈ R is an output, ui ∈ R is a smoothing variable

and xi ∈ Rdx is an input vector, the output yi is assumed to be related to ui and xi in the
varying coefficient model as follows:

yi = f(ui,xi) + ei = X ′iβ(ui) + ei,

where X ′i = (1,x′i) and ei’s are independent error terms with mean 0 and a bounded
variance.
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For a given value of the smoothing variable ut, the coefficient functions in VCM are usually
estimated locally by the formulating the weighted least squares problem as follows:

min
1

2

n∑
i=1

Wi(ut)

(
yi −

dx∑
k=0

Xikβk(ui)

)2

, (2.1)

where Wi(ut) is a kernel function constructed by ui and ut. One of possible kernel functions
is the radial basis kernel function such that Wi(ut) = exp(− 1

σ2 (ui− ut)2) with a bandwidth
parameter σ > 0.

Solving the weighted least squares problem leads to the estimate of βk(ut) for k =
0, · · · , dx, which can be expressed as vector-matrix notation as follows:

β̂(ut) = (X ′WX)−1X ′Wy, (2.2)

where X is a n× (dx + 1) input matrix and W is a diagonal matrix of Wi(ut)’s.

3. L1 regularized varying coefficient model

From (2.1) we assume that ei(ut) = Wi(yi − f(ut,xi)) follows a probability distribution
such as p(e) ∝ exp(−0.5e2). The negative log-likelihood function can be expressed as,

L0(f |ut,x) =
1

2

n∑
i=1

Wi(ut)(yi − f(ut,xi))
2. (3.1)

The regression function is estimated by a linear regression model such that f(ut,xi) =
X ′iβ(ut). Then the maximum likelihood estimates of β(ut) are obtained by minimizing the
negative log-likelihood function,

L0(β|x) =
1

2

n∑
i=1

Wi(ut)(yi −X ′iβ)2. (3.2)

Generally, the maximum likelihood estimate of β(ut) leads severe overfitting, so we are
encouraged to use a prior over β(ut). Then the regularized maximum likelihood estimate
(the maximum a posteriori estimate) of β(ut) can be obtained by minimizing the objective
function as follows:

L(β|x) = L0(β|x) + log p(β) (3.3)

where p(β) is some prior over β.
To attain the robustness to the estimation of regression function, we use a Laplacian prior

(Williams, 1995) to have the sparsity of estimates of β(ut),

p(β) ∝ exp(−λ||β||1),

where ||β||1 =
∑dx
k=0 |βk| denotes L1 norm and λ is a positive regularization parameter.
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The objective function can be reexpressed as follows:

L(β|x) =
1

2

n∑
i=1

Wi(ut)(yi −X ′iβ)2 + λ||β||1. (3.4)

Here λ controls the tradeoff between the goodness-of-fit on ||β||1 and the data. The objec-
tive function L(β|x) in (3.4) is not differentiable with respect to β at 0, we modify L(β|x)
for easy estimation by using IRWLS procedure.

We consider the objective function given (β∗,x) as follows:

L(β|β∗,x) =
1

2

n∑
i=1

Wi(ut)(yi −X ′iβ)2 +
λ

2

dx∑
k=0

(
β2
k

|β∗k |
+ |β∗k |

)
, (3.5)

then L(β|β∗,x) ≥ L(β|x) with equality if and only if β = β∗ (Krishnapuram et al., 2005)
and L(β|β∗,x) is differentiable with respect to β. At `th iteration of IRWLS procedure, we
have

L(β|β̂
(`)
,x) =

1

2

n∑
i=1

Wi(ut)(yi −X ′iβ)2 +
λ

2

dx∑
k=0

(
β2
k

|β̂(`)
k |

+ |β̂(`)
k |

)
. (3.6)

Then β̂
(`+1)

is obtained by minimizing L(β|β̂
(`)
,x) with respect to β as follows:

β̂
(`+1)

= (X ′W (ut)X + λV (β̂
(`)

))−1X ′W (ut)y, (3.7)

where W (ut) and V (β̂
(`)

) are diagonal matrices with Wi(ut)’s and (1/|β̂(`)
k |)’s, respectively.

During iterations, we find that some hatbetak ’s tend to be 0 keeping the value of objective
function L(β|x) decreasing, which motivates that we can find sparse estimates of β(ut) which
provides decreasing value of the objective function L(β|x) simultaneously.

Algorithm of L1 regularized locally weighted regression using IRWLS Procedure is given
as follows:

i) Set v = (0 : dx)′ and β̂(v)(0) = (X ′W (ut)X)−1X ′W (ut)y.

ii) Find β̂(v)(`+1) from (3.7).

iii) Set βk = 0 when β̂
(`+1)
k = 0 is sufficiently close to zero. Find v = {k|βk 6= 0}.

iv) Iterate ii) and iii) until convergence.

The estimated regression function given (ut,xj) is obtained as follows:

f̂(ut,xj) = X ′jβ̂(ut).

The performance of L1 regularized regression is affected by the hyperparameters, which
are the regularization parameter λ and the bandwidth parameter. To choose the optimal
values of hyperparameters, we consider the cross validation (CV) function for the model
selection criterion as follows:

CV (λ) =
1

n

n∑
i=1

Wi(ut)
(
yi − f̂ (−i)

λ (ut,xi)
)2

. (3.8)
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Here f̂
(−i)
λ (ut,xi) is the regression function estimated without the ith observation. Since

for each candidate set of hyperparameters, f̂
(−i)
λ (ut,xi) for i = 1, · · · , n, should be computed,

choosing the optimal values of hyperparameters using CV function (3.8) is computationally
burdensome. We consider GCV function as follows:

GCV (λ) =

n
n∑
i=1

Wi(ut)(yi − f̂λ(ut,xi))
2

(n− tr(H))2
, (3.9)

whereH = (X (:, v)′WX (:, v)+λV (v, v))−1X (:, v)′W is the hat matrix such that f̂λ(ut,x) =

Hy with the (i, j)th element Hij = ∂f̂(ut,xi)/∂yj and X(:, v) consists of Xik for i =
1, · · · , n and k ∈ v. Details of derivation of GCV function can be found in Cho et al . (2010)
and Shim et al . (2015).

Akaike (1974) defined Akaike’s Information Criterion (AIC) for the model selection crite-
rion as follows:

AIC = 2L0(β|x) + 2P, (3.10)

where P is the number of estimable parameters in the given model and L0(β|x) is the nega-
tive log-likelihood function. We use an AIC-type criterion (Hwang et al ., 2011) to incorporate
the simplicity of the model into the model selection criterion as follows:

GCV (λ)AIC = log(GCV (λ)) + P, (3.11)

where P is the average number of nonzero coefficient functions.

4. Numerical studies

Through the artificial data sets and the real data set, we illustrate the estimation per-
formance of the proposed model. For each data set, the proposed model and the varying
coefficient model (VCM) with the least squares-support vector regression (VCM LSSVR,
Shim and Hwang, 2015) are applied with the optimal values of the hyperparameters chosen
from AIC-type criterion (3.11) and GCV function, respectively. For VCM with the locally
weighted regression (VCM LWR) in (2.1) the leave-one-out CV function is used. The radial
basis kernel function is utilized for all examples in numerical studies.

Example 4.1 We generate N data sets by similar manner to Wu et al . (2015). We compare
the performance of estimations of regression functions and nonzero coefficient functions of the
proposed model with VCM LWR and VCM LSSVR. For each i = 1, · · · , n, xi1, · · · , xi15 and
ui are generated from a uniform distribution, U(0, 1), respectively, and yi ’s are generated
as follows:

yi = f(ui,xi) + ei = β0(ui) + x′iβ(ui) + ei, i = 1, · · · , n,

where ei’s are generated from the standard normal distribution,N(0, 1), Student t-distribution
with 3 degrees of freedom, t(3) and Laplace distribution, L(0, 2), respectively. Coefficient
functions are set as β0(u) = 0, β1(u) = 2sin(2πu), β2(u) = 2exp(2u− 1), β3(u) = 6u(1−u),
β4(u) = −4u3, β5(u) = β6(u) = · · · = β15(u) = 0. From each data set we obtain the mean
squared error (MSE) to measure the estimation performance.
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Tables 4.1, 4.2 and 4.3 are the results from example 4.1, which show averages of MSE’s
for regression functions and nonzero coefficient functions, respectively. The boldfaced figure
in each column signifies the smallest MSE. For n = 100, the proposed model shows the
best performance. For n = 200 with t(3) distribution and L(0, 2) distribution, the proposed
model shows the best performance. For n = 500 with L(0, 2) distribution, the proposed
model shows the best performance. Thus, we can see that the proposed model shows the
better performance for the smaller sample sizes and the thicker tailed distributions, which
indicates that the proposed model provides the robust estimations of regression functions
and nonzero coefficient functions.

Table 4.1 Results of example 4.1: Averages of MSE’s of ∆f = f(u,x) − f̂(u,x) and

∆βk = βk(u) − β̂k(u) (standard error in parenthesis) for n = 100 and N = 1000.

proposed VCM LSSVR VCM LWR

N(0, 1)

∆f 0.3741 (0.0021) 0.4518 (0.0032) 0.5718 (0.0051)
∆β1 1.0197 (0.0112) 1.2338 (0.0190) 1.4407 (0.0199)
∆β2 0.6999 (0.0151) 0.6055 (0.0172) 0.9484 (0.0420)
∆β3 0.3818 (0.0091) 0.6181 (0.0176) 0.7362 (0.0189)
∆β4 0.6427 (0.0135) 0.6624 (0.0187) 0.8026 (0.0197)

t(3)

∆f 0.7993 (0.0811) 1.4397 (0.2930) 1.9578 (0.3064)
∆β1 1.3706 (0.0511) 2.6598 (0.3925) 2.1923 (0.0567)
∆β2 1.1548 (0.0465) 1.5294 (0.0901) 2.4728 (0.1094)
∆β3 0.8319 (0.1716) 2.3507 (0.8951) 1.3993 (0.0182)
∆β4 1.0446 (0.0686) 1.5665 (0.0988) 1.6431 (0.0492)

L(0, 2)

∆f 1.6941 (0.0175) 2.7964 (0.0295) 5.1772 (0.0917)
∆β1 2.0350 (0.0503) 3.9624 (0.1209) 3.5339 (0.0989)
∆β2 2.0982 (0.0605) 3.3975 (0.1127) 4.7891 (0.0955)
∆β3 1.5504 (0.0492) 3.3692 (0.1276) 2.8735 (0.0904)
∆β4 1.8407 (0.0517) 3.4107 (0.1114) 3.3649 (0.0841)

Table 4.2 Results of example 4.1: Averages of MSE’s of ∆f = f(u,x) − f̂(u,x) and

∆βk = βk(u) − β̂k(u) (standard error in parenthesis) for n = 200 and N = 1000.

proposed VCM LSSVR VCM LWR

N(0, 1)

∆f 0.3201 (0.0013) 0.2688 (0.0016) 0.4396 (0.0019)
∆β1 0.7814 (0.0066) 0.6901 (0.0094) 1.0328 (0.0076)
∆β2 0.4132 (0.0076) 0.2675 (0.0068) 0.3172 (0.0098)
∆β3 0.2299 (0.0050) 0.2691 (0.0075) 0.3671 (0.0083)
∆β4 0.4025 (0.0072) 0.2795 (0.0069) 0.3672 (0.0075)

t(3)

∆f 0.5510 (0.0177) 0.7567 (0.0381) 1.1013 (0.1606)
∆β1 0.9675 (0.0185) 1.4049 (0.1168) 1.4310 (0.0623)
∆β2 0.6226 (0.0168) 0.7579 (0.0707) 0.6674 (0.0317)
∆β3 0.4264 (0.0165) 0.8096 (0.1462) 0.7095 (0.0391)
∆β4 0.6226 (0.0211) 0.7258 (0.0372) 0.8129 (0.1029)

L(0, 2)

∆f 1.0850 (0.0083) 1.6031 (0.0130) 1.6299 (0.0198)
∆β1 1.3954 (0.0265) 2.1173 (0.0433) 2.1301 (0.0444)
∆β2 1.1709 (0.0324) 1.5311 (0.0471) 1.4638 (0.0482)
∆β3 0.8895 (0.0263) 1.5073 (0.0455) 1.4613 (0.0423)
∆β4 1.0968 (0.0290) 1.4879 (0.0443) 1.4436 (0.0436)

Table 4.3 Results of example 4.1: Averages of MSE’s of ∆f = f(u,x) − f̂(u,x) and

∆βk = βk(u) − β̂k(u) (standard error in parenthesis) for n = 500 and N = 1000.

proposed VCM LSSVR VCM LWR

N(0, 1)

∆f 0.2823 (0.0008) 0.1219 (0.0007) 0.3327 (0.0019)
∆β1 0.6351 (0.0034) 0.2387 (0.0048) 0.6646 (0.0089)
∆β2 0.2770 (0.0037) 0.0980 (0.0022) 0.2326 (0.0059)
∆β3 0.1390 (0.0021) 0.0922 (0.0022) 0.2637 (0.0052)
∆β4 0.2755 (0.0034) 0.1008 (0.0022) 0.2672 (0.0047)

t(3)

∆f 0.3725 (0.0026) 0.3277 (0.0050) 0.5076 (0.0031)
∆β1 0.7061 (0.0059) 0.6249 (0.0103) 0.9754 (0.0059)
∆β2 0.3604 (0.0074) 0.2508 (0.0086) 0.2587 (0.0067)
∆β3 0.2174 (0.0049) 0.2427 (0.0071) 0.3091 (0.0065)
∆β4 0.3478 (0.0067) 0.2542 (0.0075) 0.3135 (0.0064)

L(0, 2)

∆f 0.6232 (0.0038) 0.7741 (0.0054) 0.8440 (0.0046)
∆β1 0.9041 (0.0116) 1.1849 (0.0158) 1.2704 (0.0145)
∆β2 0.5763 (0.0135) 0.5829 (0.0158) 0.5217 (0.0144)
∆β3 0.4222 (0.0104) 0.5965 (0.0160) 0.5828 (0.0143)
∆β4 0.5520 (0.0126) 0.6118 (0.0165) 0.5918 (0.0156)
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Example 4.2 We consider a subset of the wage data set studied in Wooldridge (2012),
collected on each of 526 working individuals for the year 1976. The variables we use in this
example are the wage (in dollars per hour, output), years of education (smoothing variable)
and marital status (the person is married or not, input variable). The input variable is a
binary (1,0) in nature and serves to indicate qualitative features of the each individual.
Taking these variables into account, we consider the varying coefficient model as follows:

log(yi) = β0(ui) + β1(ui)xi + ei, i = 1, · · · , 526,

where y, u and x denote the wage, years of education and marital status, respectively.
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Figure 4.1 Estimated coefficient functions for Wage data set in Example 2. Solid lines: proposed
estimates, dashed lines: estimates by VCM LSSVR, dotted lines: estimates by VCM LWR.

Figure 4.1 shows the extent to which the coefficient function varies with years of education,
which shows that the smoothing variable (u, ‘educ’) gives the strong effect on the regression
coefficient function. Three models show similar pattern on this example but estimates of
coefficient function β1(u) by the proposed model are 0’s under 6 years of education.

5. Conclusions

In this paper, we dealt with a robust version of varying coefficient model based on the
regularized locally weighted regression model with L1-regularization. We use the iteratively
reweighted least squares procedure to solve the L1 regularized log- likelihood function. The
proposed model provides the efficient computations and the generalized cross validation
function for the model selection. We showed that the proposed model derives the satisfying
solutions through the examples. The proposed model is found to be simple and reliable in
that both estimation of the coefficient functions and variable selection.
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