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Abstract
A structured model with both single-index and varying coefficients is a powerful tool in modeling high di-

mensional data. It has been widely used because the single-index can overcome the curse of dimensionality and
varying coefficients can allow nonlinear interaction effects in the model. For high dimensional index vectors,
variable selection becomes an important question in the model building process. In this paper, we propose an
efficient estimation and a variable selection method based on a smoothing spline approach in a partially linear
single-index-coefficient regression model. We also propose an efficient algorithm for simultaneously estimat-
ing the coefficient functions in a data-adaptive lower-dimensional approximation space and selecting significant
variables in the index with the adaptive LASSO penalty. The empirical performance of the proposed method is
illustrated with simulated and real data examples.

Keywords: partially linear, penalized likelihood, smoothing splines, variable selection, single-
index, varying coefficient model

1. Introduction

In a generalized linear model, the regression function µ(x, z) = E(Y |X = x,Z = z) is modeled linearly
through a link function. Various structured models have been proposed in the literature for modeling
high dimensional data. A structured model combined with both single-index and varying coefficients
has been recently proposed for Gaussian error with the identity link,

Y = ηT
(
αT X

)
Z + ϵ,

where Y is a response variable, X(∈ Rp) and Z(∈ Rd) are covariate vectors, η(·) = (η1(·), . . . , ηd(·))T

is a vector of unknown functions, α = (α1, . . . , αp)T is a vector of unknown parameters, and ϵ is
a random error with mean zero. It is assumed that ||α|| = 1 and sign(α1) = 1 for identifiability of
the model. This model is called single-index-coefficient model (SICM). The SICM has advantages
of avoiding the curse of dimensionality that multivariate nonparametric models can suffer because it
uses a univariate nonparametric function with a single-index. It also has nonlinear interaction effects
between index covariates and other covariates. These advantages are the reason for its popularity in
modeling for many scientific fields such as medical areas, biostatistics, economics, and environmental
studies.
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Allowing a linear association between the response and covariates in SICM yields a partially linear
single-index-coefficient model (PLSICM),

Y = ηT
(
αT X

)
Z1 + β

T Z2 + ϵ. (1.1)

The semiparametric model (1.1) includes the partially linear varying coefficient model (PLVCM)
and the standard varying coefficient model without a single-index. When Z1 = 1, the PLSICM be-
comes the classical partially linear single-index model (PLSIM).

For the estimation of index parameters and unknown coefficient function in PLSICM, various esti-
mation methods have been proposed such as local linear method, kernel method, B-splines, empirical
likelihood method, and penalized splines (Xia and Li, 1999; Xue and Wang, 2012; Huang, 2012; Yang
et al., 2014). In the nonparametric or semiparametric single-index models, variable selection methods
have been suggested using the least absolute shrinkage and selection operator (LASSO) (Tibshirani,
1996), the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), and the adaptive LASSO
(Zou, 2006) (Peng and Huang, 2011; Foster et al., 2013; Huang et al., 2013; Huang et al., 2014;
Yang and Yang, 2014; Zhu et al., 2015). However, limited studies have been done on the selection
and simultaneous estimation for both varying coefficients and single-index in a smoothing splines
framework.

In this paper, we propose a simple estimation method based on a smoothing splines approach
for selecting variables in the index and simultaneously estimating unknown nonparametric functions,
regression parameters in the partial terms, and index parameters. Smoothing splines have advantages
over other nonparametric estimation methods because they can avoid the problem of choice and the
placements of knots.

The paper is organized as follows. Section 2 presents a smoothing splines technique of a data-
adaptive lower-dimensional approximation in a penalized likelihood method in an ordinary nonpara-
metric setting so as to speed up the computation of function estimates without any loss of performance
and extend it to PLSICM. We propose a simple and efficient method for estimating and selecting in-
dex parameters based on the penalization approach. Simulated and real data examples are illustrated
to evaluate the performance of the proposed method in Section 3 and Section 4 respectively. Per-
formance comparisons are made with different penalties and other estimation methods. The paper is
concluded with a discussion in Section 5.

2. The model

2.1. Smoothing splines in partially linear single-index-coefficient model

Suppose that the data (Xi,Z1i,Z2i,Yi), i = 1, . . . , n, are independent and identically distributed samples
from the PLSICM (1.1). For given α with ||α|| = 1 and positive first element, the function estimates in
(1.1) can be obtained by iteratively minimizing the following penalized least squares functional

n∑
i=1

{
Yi − ηT

(
αT Xi

)
Z1,i − βT Z2,i

}2
+ n

d∑
j=1

λ jJ(η j), (2.1)

where J(η) is the penalty function of the roughness of η, and the smoothing parameter λ controls the
trade-off between the lack of fit and the roughness of η.

For given α, let u = αT X. The minimizer of (2.1) is in infinite-dimensional spaceH ⊆ { f : J( f ) <
∞}; it lies in a Hilbert space H = NJ ⊕ HJ , where NJ = { f : J( f ) = 0} is the null space of J( f ),
and space HJ is a reproducing kernel Hilbert space (RKHS) with J( f ) as the square norm. Letting
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J( f ) =
∫ 1

0 f̈ 2du on U = [0, 1] yields the popular cubic splines with NJ = span{1, k1(u)}, where

k1(u) = u − 0.5. HJ = { f :
∫ 1

0 f du =
∫ 1

0 ḟ du = 0, J( f ) < ∞} with J( f ) as the square norm provides
the reproducing kernel RJ(u1, u2) = k2(u1)k2(u2) − k4(u1 − u2), where kν = Bν/ν! are scaled Bernoulli
polynomials. Gu (2013) provides details of the RKHS and its properties.

For estimation of η and β in (1.1), a data-adaptive lower-dimensional approximation in penalized
likelihood methods, as originally proposed by Gu and Kim (2002) is used to speed up the computation
of function estimates without any loss of performance. It has been shown that the convergence rate
of the minimizer of the penalized likelihood functional in Hn = NJ ⊕ HJ is the same as that in the
lower-dimensional function space Hq = NJ ⊕ span{RJ(w j, · ), j = 1, . . . , q}, where {w j} are random
subsets of {ui, i = 1, . . . , n}, as long as q ≍ n2/(mr+1)+δ, where for some m ∈ [1, 2], r > 1, δ > 0 is
arbitrary. The smoothness of the true function is represented by m. We let m = 2 under the assumption
that the true function is sufficiently smooth. The constant r characterizes the smoothness of the model,
and r = 4 is used for cubic splines.

For fixed λ, the minimizer of (2.1) inHq can be written as

ηλ(ui) =
m∑
ν=1

dνϕν(ui) +
q∑

j=1

ciRJ(w j, ui), (2.2)

where {ϕν} is a basis of null space NJ .
Inserting (2.2) to (2.1) becomes a minimization problem of the penalized least squares functional

to find the vectors (c1, . . . , cq)T and (d1, . . . , dm)T . The estimation of β can be obtained as a byproduct
of partial splines by adding βT Z2 into the unpenalized term in (2.2). Details can be found in Kim and
Gu (2004) and Gu (2013).

Selecting appropriate smoothing parameters in nonparametric function estimation is important
because they determine the performance of the function estimates. Kim and Gu (2004) suggested the
following modification to the generalized cross-validation (GCV) score,

GCVγ(λ) =
n−1YT (I − A(λ))2Y[
n−1tr(I − γA(λ))

]2 , (2.3)

where A(λ) is the smoothing matrix with the fitted values Ŷ = A(λ)Y . We let γ = 1.4 as suggested in
Kim and Gu (2004).

2.2. Estimation and selection of single-index parameters

For given the current estimates of η and β, the estimation and selection of α is obtained by minimizing
the penalized least squares functional with a penalty on α. For given α0, we employ a first-order
approximation

η
(
αT X

)
Z1 ≈ η

(
αT

0 X
)

Z1 + η
′
(
αT

0 X
)

Z1(α − α0)T X.

Then we have

Y − η
(
αT X

)
Z1 − βT Z2 ≈ Y − η

(
αT

0 X
)

Z1 − η′
(
αT

0 X
)

Z1

[
αT X − αT

0 X
]
− βT Z2.

Therefore, we derive the following penalized least squares functional for α for given η and β,
n∑

i=1

(
Ỹi − αT X̃i

)2
+ nPλ(α), (2.4)
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which is to be minimized, where Ỹ = Y − η(αT
0 X)Z1 + η

′(αT
0 X)Z1(αT

0 X) − βT Z2 and X̃ = η′(αT
0 X)Z1X.

Note that we assume that η is smooth enough.
For the penalty in (2.4), we use the adaptive LASSO penalty Pλ(α) = λ

∑d
j=1 w j|α j|, where λ is

another smoothing parameter. We choose the weight ŵ j = 1/|α̂ j|. It is well-known that the adaptive
LASSO enjoys the oracle properties. It uses adaptive weights for penalizing different coefficients
in the l1 penalty (Zou, 2006). The performance of variable selection of the adaptive LASSO was
compared with other penalty functions in our simulations.

2.3. Computational algorithm

Given α, the asymptotic efficiency for the function estimator of η in the lower-dimensional function
space is obtained for q ≍ n2/(mr+1)+δ, ∀ δ > 0 (Gu and Kim, 2002). We take their suggestion of
q = kn2/(4m+1) for cubic splines, m = 2 under the assumption that the true function η is sufficiently
smooth, and k = 10 for the computation.

The estimator of α is calculated by a minimizer of the penalized least squares functional (2.4) for
given η and β. In order to improve the selection performance, we first consider to take the estimation
of α by minimizing (2.4) without penalization, which gives nonzero estimates to all index parameters.
Then we take this estimate as a starting value for the selection of index parameters with the adaptive
LASSO penalty. The penalized estimates of index parameters with the adaptive LASSO are computed
using two nested loops: (1) for fixed smoothing parameter for the index parameters, the inner loop
computes the optimal minimizers of the penalized least squares functional of α by Newton iteration.
(2) In the outer loop, the optimal smoothing parameter λ for the index parameters is obtained by
minimizing the ordinary GCV score by the gird search with a grid (0.0005, 0.1) by 0.002.

Algorithm

• Step 1. Start with an initial estimator of α by minimizing (2.4) with no penalty. For example, set
an initial vector for α by randomly selecting from a uniform distribution on [0, 1]. Calculate the
estimates of η and β by the smoothing splines for given α̂. Then given the current estimates of η
and β, update the estimate of α by minimizing (2.4) with no penalty. Iterate these two steps until
the estimate of α converges.

• Step 2. Given α̂, let u = α̂T X. Calculate the estimates of η and β by the smoothing splines.

• Step 3. Given η̂ and β̂, the adaptive LASSO estimate of α is calculated by minimizing the penalized
least squares functional (2.4). For the initial value for ŵ j = 1/|α̂ j| in the adaptive LASSO penalty,
the minimizer of (2.4) with no penalty was used. At each iteration, ŵ j was updated by the minimizer
of (2.4) at the previous step.

• Step 4. Repeat step 2 and 3 until convergence. The final estimates of η and β are obtained at
convergence of α. Also, a GCV score is calculated for a fixed smoothing parameter.

If there are more than one unknown functions to estimate, a Gauss-Seidel type algorithm (backfit-
ting algorithm) estimates each of the coefficient functions iteratively. Note that the classical smoothing
splines on the product domain are calculated via smoothing spline ANOVA decomposition. However,
a similar decomposition cannot be used to obtain varying-coefficient function estimates in our model
due to the association between predictors Z and varying-coefficient functions η (Leng, 2009).
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2.4. Interval inference

Bayesian confidence intervals for a minimizer of the penalized likelihood functional were first derived
by Wahba (1983) from the Bayes model of a penalized likelihood estimator. Consider f = f0 + f1,
where f0 has a diffuse prior in NJ and f1 has a zero-mean Gaussian process prior with covariance
function

E[ f1(u1) f1(u2)] = bRJ

(
u1,wT

)
Q+RJ

(
wT , u2

)
,

where Q+ is the Moore-Penrose inverse of Q. Setting b = 1/nλ, the minimizer of (1.1) inHq is seen to
be the posterior mode under this prior. The Bayesian confidence intervals for the coefficient function
estimates are then obtained. The detailed derivations are described in Kim and Gu (2004).

3. Simulations

A simulation study was conducted to evaluate the performance of the proposed estimators. The fol-
lowing criteria are considered to assess the performance of the selection of index covariates; IZ rep-
resents the average number of nonzero index parameters that are incorrectly selected as zero; CZ is
the average number of zero index parameters that are correctly selected. The biases and standard
deviations of the estimates of α and β are calculated respectively. The performance of the estimation
of η is evaluated by the square root of the average squared error (RASE) defined as

RASE =

 1
ngrid

ngrid∑
i=1

{η̂(ui) − η(ui)}2


1
2

.

In each example, we carried out 200 simulations and the sample size in each simulation is set
to n = 100, 200, and 300. The results are summarized in Table 1 and Table 2. For comparison of
performance of the adaptive LASSO penalty, we also used the LASSO penalty Pλ(α) = λ

∑d
j=1 |α j|

and the SCAD penalty Pλ(α) = λ
∑d

j=1 θλ(α j), where

θλ(t) = λ
{

I(t≤λ) +
(aλ − t)+
(a − 1)λ

I(t>λ)

}
,

and a = 3.7.

Example 1. A simple example of the SICM is the partially linear single-index model, which can
be written as

Y = η
(
αT X

)
+ βT Z + ϵ,

where η(u) = sin(π(u − a)/(c − a)), a =
√

3/2 − 1.645/
√

12 and c =
√

3/2 + 1.645/
√

12, α =
(3, 1.5, 0, 0, 2, 0, 0, 0)T /

√
12.25, and β = (2, 1.6, 0.8). The covariates X = (X1, X2, . . . , X8)T are gen-

erated independently from uniform distribution U(0, 1) and Z = (z1, z2, z3)T are generated from mul-
tivariate normal distribution N(0,Σ) with Σ = (σi j) having entries σi j = 1 for i = j and σi j = 0.6 for
i , j and ϵ is generated independently from N(0, σ2) with σ = 0.1.

Example 2. In this example, we consider the following SICM

Y = η1

(
αT X

)
Z1 + η2

(
αT X

)
Z2 + β

T Z3 + ϵ,
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Table 1: Bias, SD, and model selection results (IZ, CZ) for the estimates of α in Examples 1–4

n Method α1 α2 α5 IZ CZBias SD Bias SD Bias SD

Example 1

100
SS-LASSO 0.0272 0.1257 0.0221 0.0932 0.0431 0.2005 0.000 1.495
SS-SCAD 0.0289 0.1226 0.0158 0.0894 0.0407 0.1991 0.030 1.840
SS-ALASSO 0.0044 0.0903 0.0228 0.0753 0.0258 0.1430 0.060 4.900

200
SS-LASSO 0.0023 0.0501 0.0079 0.0355 0.0241 0.1689 0.000 2.015
SS-SCAD 0.0049 0.0471 0.0039 0.0307 0.0216 0.1640 0.000 2.740
SS-ALASSO 0.0017 0.0551 0.0159 0.0620 0.0310 0.1920 0.035 4.935

300
SS-LASSO −0.0014 0.0080 0.0028 0.0073 0.0004 0.0101 0.000 2.375
SS-SCAD 0.0005 0.0076 0.0003 0.0100 −0.0005 0.0098 0.000 2.850
SS-ALASSO −0.0029 0.0104 0.0058 0.0146 0.0005 0.0107 0.000 5.000

Example 2

100
SS-LASSO 0.0097 0.0880 0.0172 0.0586 0.0143 0.0934 0.005 2.430
SS-SCAD 0.0236 0.0924 0.0286 0.0952 0.0163 0.1213 0.035 3.095
SS-ALASSO 0.0225 0.1396 0.0439 0.1136 0.0187 0.1061 0.135 4.805

200
SS-LASSO 0.0012 0.0452 0.0026 0.0086 0.0021 0.0121 0.000 3.480
SS-SCAD 0.0069 0.0542 −0.0014 0.0095 0.0018 0.0181 0.000 3.885
SS-ALASSO −0.0029 0.0062 0.0044 0.0094 0.0013 0.0047 0.000 5.000

300
SS-LASSO −0.0015 0.0028 0.0024 0.0043 0.0005 0.0030 0.000 3.355
SS-SCAD −0.0001 0.0024 0.0005 0.0039 −0.0001 0.0029 0.000 3.920
SS-ALASSO −0.0020 0.0031 0.0037 0.0053 0.0003 0.0030 0.000 5.000

Example 3

100
SS-LASSO 0.0834 0.1481 0.0635 0.1317 0.0342 0.1920 0.035 0.965
SS-SCAD 0.0962 0.1526 0.0515 0.1352 0.0365 0.1908 0.045 1.335
SS-ALASSO 0.0645 0.1617 0.0653 0.1389 0.0225 0.1665 0.195 3.850

200
SS-LASSO 0.0213 0.1112 0.0301 0.0916 0.0070 0.0912 0.000 0.780
SS-SCAD 0.0255 0.1113 0.0261 0.0906 0.0025 0.0795 0.010 1.135
SS-ALASSO 0.0100 0.0913 0.0228 0.0749 0.0021 0.0734 0.031 4.740

300
SS-LASSO −0.0010 0.0025 0.0087 0.0413 0.0047 0.0327 0.000 0.750
SS-SCAD 0.0012 0.0246 0.0063 0.0403 0.0038 0.0324 0.000 1.060
SS-ALASSO −0.0048 0.0271 0.0120 0.0463 0.0024 0.0323 0.000 4.920

Example 4

100
SS-LASSO −0.0020 0.0110 0.0081 0.0166 −0.0005 0.0102 0.000 2.225
SS-SCAD 0.0009 0.0080 0.0032 0.0145 −0.0023 0.0094 0.000 3.420
SS-ALASSO −0.0079 0.0164 0.0159 0.0272 0.0013 0.0119 0.000 5.000

200
SS-LASSO −0.0027 0.0054 0.0040 0.0080 0.0015 0.0059 0.000 2.890
SS-SCAD −0.0003 0.0042 0.0009 0.0063 0.0002 0.0055 0.000 3.552
SS-ALASSO −0.0009 0.0552 0.0093 0.0242 0.0050 0.0495 0.005 5.000

300
SS-LASSO −0.0015 0.0034 0.0025 0.0047 0.0005 0.0035 0.000 3.453
SS-SCAD 0.0003 0.0028 0.00005 0.0041 −0.0004 0.0033 0.000 3.760
SS-ALASSO −0.0037 0.0068 0.0068 0.0109 0.0008 0.0042 0.015 5.000

SD = standard deviation; IZ = the average number of nonzero index parameters that are incorrectly selected as zero; CZ=
the average number of zero index parameters that are correctly selected; SS = smoothing spline; LASSO = least absolute
shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; ALASSO = adaptive LASSO.

where η1(u) = sin(π(u − a)/(c − a)), a =
√

3/2 − 1.645/
√

12 and c =
√

3/2 + 1.645/
√

12 and
η2(u) = 1 + 3u2. The covariates X = (X1, X2, . . . , X8)T are generated independently from uniform
distribution U(0, 1) and Z1 = 1, (Z2,ZT

3 )T are generated from the multivariate normal distribution
N(0,Σ) with Σ = (σi j) having entries σi j = 1 for i = j and σi j = 0.6 for i , j and α, β, and ϵ are the
same as those in Example 1.

Example 3. This example is the same as the Example 2, but with σ = 1.

Example 4. This example is the same as the Example 2, but with an additional 20 noise covariates,
so that α = (3, 1.5, 0, 0, 2, 0, 0, 0, 01×20)T /

√
12.25.

Table 1 showed that the adaptive LASSO performed well in estimating and selecting the significant
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Table 2: Bias and SD of β and RASEs of η in Examples 1–4

n Method β1 β2 β3 RASE1 RASE2Bias SD Bias SD Bias SD

Example 1

100
SS-LASSO −0.0018 0.0263 −0.0037 0.0177 0.0017 0.0163 0.0360 -
SS-SCAD −0.0020 0.0225 −0.0029 0.0162 0.0004 0.0150 0.0376 -
SS-ALASSO −0.0011 0.0200 −0.0030 0.0156 0.0018 0.0137 0.0331 -

200
SS-LASSO 0.00006 0.0099 −0.0021 0.1017 0.0001 0.0090 0.0279 -
SS-SCAD 0.0003 0.0099 −0.0022 0.0103 0.00004 0.0090 0.0239 -
SS-ALASSO 0.0001 0.0099 −0.0030 0.0115 −0.0003 0.0090 0.0295 -

300
SS-LASSO −0.0003 0.0075 0.0013 0.0073 −0.00002 0.0077 0.0213 -
SS-SCAD −0.0003 0.0075 0.0013 0.0074 −0.0002 0.0077 0.0192 -
SS-ALASSO −0.0005 0.0093 0.0016 0.0073 −0.00006 0.0077 0.0192 -

Example 2

100
SS-LASSO 0.0041 0.0342 0.0055 0.0260 −0.0015 0.0306 0.0341 0.0520
SS-SCAD 0.0009 0.0539 0.0129 0.0484 0.0011 0.0457 0.0329 0.0474
SS-ALASSO 0.0022 0.0479 0.0082 0.0375 0.0054 0.0411 0.0310 0.0424

200
SS-LASSO −0.0016 0.0110 −0.0009 0.0105 −0.0004 0.0120 0.0003 0.0005
SS-SCAD −0.5110 0.0145 −0.0004 0.0110 −0.0001 0.0118 0.0003 0.0005
SS-ALASSO −0.0013 0.0100 −0.0003 0.0099 −0.0008 0.0098 0.0003 0.0004

300
SS-LASSO −0.0001 0.0086 −0.00004 0.0087 −0.0005 0.0083 0.0152 0.0241
SS-SCAD −0.0001 0.0086 −0.0009 0.0086 −0.0004 0.0083 0.0151 0.0227
SS-ALASSO −0.0001 0.0085 0.0004 0.0086 −0.0003 0.0084 0.0151 0.0233

Example 3

100
SS-LASSO 0.0139 0.1885 0.0488 0.1700 0.0062 0.1965 0.3651 0.6765
SS-SCAD 0.0146 0.1808 0.0486 0.1822 0.0079 0.2018 0.3770 0.7419
SS-ALASSO 0.0223 0.1850 0.0435 0.1695 −0.0058 0.1861 0.2818 0.4043

200
SS-LASSO −0.0027 0.1008 0.0133 0.1030 −0.0141 0.1033 0.1966 0.3609
SS-SCAD −0.0033 0.1013 0.0122 0.1030 −0.0122 0.1025 0.1962 0.3695
SS-ALASSO −0.0019 0.0977 0.0163 0.1026 −0.0192 0.1031 0.1387 0.2197

300
SS-LASSO 0.0061 0.0880 0.0037 0.0877 −0.0048 0.0835 0.1375 0.2291
SS-SCAD 0.0063 0.0881 0.0038 0.0877 −0.0046 0.0837 0.1347 0.2307
SS-ALASSO 0.0038 0.0858 0.0073 0.0864 −0.0011 0.0835 0.1101 0.1472

Example 4

100
SS-LASSO −0.0012 0.0168 0.0025 0.0182 −0.0025 0.0202 0.0537 0.1086
SS-SCAD −0.0004 0.0170 0.0043 0.0169 −0.0020 0.0196 0.0366 0.0575
SS-ALASSO −0.0008 0.0158 0.0057 0.0156 0.0023 0.0197 0.0313 0.0428

200
SS-LASSO −0.0008 0.0105 −0.0010 0.0103 −0.0027 0.0105 0.0286 0.0617
SS-SCAD −0.0008 0.0107 −0.0008 0.0104 −0.0025 0.0107 0.0222 0.0408
SS-ALASSO −0.0001 0.0107 −0.00006 0.0102 −0.0003 0.0122 0.0180 0.0322

300
SS-LASSO −0.0005 0.0092 0.0009 0.0091 0.0004 0.0080 0.0183 0.0325
SS-SCAD −0.0004 0.0091 0.0007 0.0090 0.0001 0.0080 0.0173 0.0272
SS-ALASSO −0.0006 0.0091 −0.0010 0.0087 −0.00005 0.0079 0.0155 0.0246

SD = standard deviation; RASE = square root of the average squared error; SS = smoothing spline; LASSO = least absolute
shrinkage and selection operator; SCAD = smoothly clipped absolute deviation; ALASSO = adaptive LASSO.

variables of α. The proposed method with the adaptive LASSO has similar performance in estimating
α as that of SCAD in terms of bias and standard deviation; however, it showed better performance in
correct model identification. Even in the high dimensional case, the estimation and selection perfor-
mance of the proposed method with the adaptive LASSO showed superior to other methods. Table 2
also confirmed that the proposed method with the adaptive LASSO showed superior performance than
others in terms of bias and SD of β̂ and RASE, especially in the high dimensional case. The RASEs
of the coefficient functions and the biases and SDs of α̂ and β̂ decrease as n increased.

4. Real data analysis

We demonstrated the proposed method to the body fat dataset. The data contain 252 observations
with 14 variables, in which the response variable is the percentage of body fat determined by the
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Table 3: Results for the body fat data

Method SS-ALASSO CP SIM-SCAD LM-SCADPLSIM SIM PLSICM PLSICM2
Age 0.0124 0.0000 0.0199 0.0095 0.0099 0.0149 0.0489

Weight 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1457
Height 0.0000 0.0000 0.0000 −0.0366 0.0000 0.0000 −0.0395
Neck −0.1197 −0.1828 −0.1120 −0.1504 −0.0968 −0.1691 −0.1408
Chest 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0943

Abdomen 0.9663 0.9614 0.9804 0.9659 0.9689 0.9606 0.7663
Hip −0.2128 −0.1516 0.1276 −0.2075 0.0000 0.0000 −0.3638

Thigh 0.0000 0.0924 0.0000 0.0000 0.0000 0.0000 0.1461
Knee 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ankle 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Biceps 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Forearm 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0413
Wrist −0.0807 −0.1032 −0.0900 −0.0346 −0.2278 −0.2202 −0.1186

R2 0.6797 0.6818 0.6874 0.6815 0.6691 0.6738 0.6148

SS = smoothing spline; ALASSO = adaptive least absolute shrinkage and selection operator; SIM = single-index model;
SCAD = smoothly clipped absolute deviation; LM-SCAD = linear model with SCAD; PLSIM = partially linear SIM;
PLSICM = partially linear single.-index-coefficient model.

underwater weighting technique. The covariates include age, weight, height, and 10 body circum-
ference measurements (neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, and wrist).
The dataset is available from the website (http://lib.stat.cmu.edu/datasets/bodyfat). After excluding 6
outliers similar to Peng and Huang (2011), we adopt several structured models, including PLSICM
to identify the association between the percentage of body fat and other covariates, by selecting the
index parameters. We considered the PLSIM, SIM, and PLSICM as,

PLSIM : Y = η1

(
αT X10

)
+ β1Z4 + ϵ,

SIM : Y = η1

(
αT X13

)
+ ϵ,

PLSICM : Y = η1

(
αT X10

)
Z1 + η2

(
αT X10

)
Z3 + β1Z4 + ϵ,

where Y = log (percent body fat), X10 is a covariate matrix of the 10 body circumference measure-
ments, and XT

13 = (XT
10,Z

T
2 ,Z

T
3 , Z

T
4 ) with Z1 = 1, Z2 = weight, Z3 = height, Z4 = age. The PLSIM was

considered in Feng and Xue (2015) with their combined penalization method and the SIM was fitted
in Peng and Huang (2011) by using the Kernel method with SCAD penalty.

Table 3 showed the estimation results of the body fat data for each model. For comparison, the
results of Feng and Xue (2015) (CP), Peng and Huang (2011) (SIM-SCAD), and a linear model
with SCAD penalty (LM-SCAD) were also presented. Age was found to have a nonzero constant
effect on the percentage of body fat. Among ten body circumference variables, neck, abdomen, hip,
and wrist were selected by the proposed method. All models found that abdomen was the most
important measurement for the prediction of the percentage of body fat. Previous results showed
that the wrist was more important than hip and thigh circumferences; however, our models showed
that hip was more important than the wrist to predict the percentage of body fat. Figure 1 showed
the coefficient function estimates and its 95% Bayesian confidence intervals of the PLSICM. The
estimated coefficient function of index of circumferences η1 was nonlinear, which are consistent to
the results of other literatures. The function estimate of η2 was almost flat, which leads us to consider
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Figure 1: Varying coefficient function estimates in partially linear single-index-coefficient model of body fat
data.

the following model (PLSICM2),

Y = η1

(
αT X10

)
Z1 + β1Z4 + β2Z3 + ϵ,

and the fitted model showed consistent results to PLSICM with an additional result that the height
was reversely related to the percentage of body fat at the cost of the reduced multiple R2.

5. Discussion

In this paper we proposed a simple nonparametric estimation method that employs smoothing splines
to estimate varying-coefficient functions and select index parameters by shrinkage methods in PLSICM.
This was based on the availability of reliable information that some predictors are linearly associated
with the response; however, a single-index, a possible linear combination of predictors, is related to
the response to different degrees according to the other predictors. The application of the splines
method overcomes drawbacks suffered by high dimensional kernels. We therefore suggest a simple
method based on a lower dimensional approximation in smoothing splines computation to estimate
varying-coefficient functions as well as to select index parameters simultaneously using existing tech-
niques. Simulation results have shown that the proposed method outperformed previously proposed
methods. Future studies should investigate the parallel nonparametric estimation methods in partially
linear single-index varying coefficient mixed effect models in the framework of smoothing spline
regression.
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