• Title/Summary/Keyword: Variational inequality

Search Result 192, Processing Time 0.021 seconds

CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF GENERALIZED VARIATIONAL INEQUALITIES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.213-222
    • /
    • 2013
  • In this paper, we introduce and consider a new system of generalized variational inequalities involving five different operators. Using the sunny nonexpansive retraction technique we suggest and analyze some new explicit iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.

ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

  • Kim, Jong Kyu;Qin, Xiaolong;Lim, Won Hee
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.617-630
    • /
    • 2012
  • In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

WEAK CONVERGENCE THEOREMS FOR GENERALIZED MIXED EQUILIBRIUM PROBLEMS, MONOTONE MAPPINGS AND PSEUDOCONTRACTIVE MAPPINGS

  • JUNG, JONG SOO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1179-1194
    • /
    • 2015
  • In this paper, we introduce a new iterative algorithm for finding a common element of the set of solutions of a generalized mixed equilibrium problem related to a continuous monotone mapping, the set of solutions of a variational inequality problem for a continuous monotone mapping, and the set of fixed points of a continuous pseudocontractive mapping in Hilbert spaces. Weak convergence for the proposed iterative algorithm is proved. Our results improve and extend some recent results in the literature.

ON STABILITY OF NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS WITH IMPULSIVE EFFECT

  • Kang, Bowon;Koo, Namjip;Lee, Hyunhee
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.879-890
    • /
    • 2020
  • In this paper we study the stability properties of solutions of nonlinear impulsive integro-differential systems by using an integral inequality under the stability of the corresponding variational impulsive integro-differential systems. Also, we give examples to illustrate our results.

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

STRONG CONVERGENCE OF A METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS OF A NONEXPANSIVE SEMIGROUP IN HILBERT SPACES

  • Buong, Nguyen
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.61-74
    • /
    • 2011
  • In this paper, we introduce a new iteration method based on the hybrid method in mathematical programming and the descent-like method for finding a common element of the solution set for a variational inequality and the set of common fixed points of a nonexpansive semigroup in Hilbert spaces. We obtain a strong convergence for the sequence generated by our method in Hilbert spaces. The result in this paper modifies and improves some well-known results in the literature for a more general problem.

An Iterative Method for Equilibrium and Constrained Convex Minimization Problems

  • Yazdi, Maryam;Shabani, Mohammad Mehdi;Sababe, Saeed Hashemi
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • We are concerned with finding a common solution to an equilibrium problem associated with a bifunction, and a constrained convex minimization problem. We propose an iterative fixed point algorithm and prove that the algorithm generates a sequence strongly convergent to a common solution. The common solution is identified as the unique solution of a certain variational inequality.

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.

A PARALLEL HYBRID METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE MAPPINGS IN HILBERT SPACE

  • Hieu, Dang Van
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.373-388
    • /
    • 2015
  • In this paper, a novel parallel hybrid iterative method is proposed for finding a common element of the set of solutions of a system of equilibrium problems, the set of solutions of variational inequalities for inverse strongly monotone mappings and the set of fixed points of a finite family of nonexpansive mappings in Hilbert space. Strong convergence theorem is proved for the sequence generated by the scheme. Finally, a parallel iterative algorithm for two finite families of variational inequalities and nonexpansive mappings is established.

A GENERAL ITERATIVE METHOD BASED ON THE HYBRID STEEPEST DESCENT SCHEME FOR VARIATIONAL INCLUSIONS, EQUILIBRIUM PROBLEMS

  • Tian, Ming;Lan, Yun Di
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.603-619
    • /
    • 2011
  • To the best of our knowledge, it would probably be the first time in the literature that we clarify the relationship between Yamada's method and viscosity iteration correctly. We design iterative methods based on the hybrid steepest descent algorithms for solving variational inclusions, equilibrium problems. Our results unify, extend and improve the corresponding results given by many others.