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WEAK CONVERGENCE THEOREMS FOR GENERALIZED

MIXED EQUILIBRIUM PROBLEMS, MONOTONE

MAPPINGS AND PSEUDOCONTRACTIVE MAPPINGS

Jong Soo Jung

Abstract. In this paper, we introduce a new iterative algorithm for
finding a common element of the set of solutions of a generalized mixed
equilibrium problem related to a continuous monotone mapping, the set
of solutions of a variational inequality problem for a continuous monotone
mapping, and the set of fixed points of a continuous pseudocontractive
mapping in Hilbert spaces. Weak convergence for the proposed iterative
algorithm is proved. Our results improve and extend some recent results
in the literature.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖, and let C be a nonempty closed convex subset of H . Let B : C → H be
a nonlinear mapping, let ϕ : C → R be a function, and let Θ be a bifunction
of C × C into R, where R is the set of real numbers.

The generalized mixed equilibrium problem (for short, GMEP) of finding
x ∈ C such that

(1.1) Θ(x, y) + 〈Bx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C,

was introduced by Peng and Yao [26] (also see [34]). The set of solutions of the
GMEP is denoted by GMEP (Θ, ϕ,B).

The GMEP is very general in the sense that it includes, as special cases, the
generalized equilibrium problem (for short, GEP) in case that ϕ = 0 in (1.1)
([30]), the mixed equilibrium problem (for short, MEP) in case that B = 0 in
(1.1) ([6, 32]), the equilibrium problem (for short, EP) in case that B = 0 and
ϕ = 0 in (1.1) ([3, 10, 11]) and others. In particular, if ϕ = 0 and Θ(x, y) = 0
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for all x, y ∈ C in (1.1), the GMEP reduces the following variational inequality
problem (for short, VIP) of finding x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of the VIP is denoted by V I(C,B).
A mapping F of C into H is called monotone if

〈x− y, Fx− Fy〉 ≥ 0, ∀x, y ∈ C.

A mapping F of C into H is called α-inverse-strongly monotone (see [12]) if
there exists a positive real number α such that

〈x− y, Fx− Fy〉 ≥ α‖Fx− Fy‖2, ∀x, y ∈ C.

If F is an α-inverse-strongly monotone mapping of C into H , then it is obvious
that F is 1

α
-Lipschitz continuous, that is, ‖Fx−Fy‖ ≤ 1

α
‖x−y‖ for all x, y ∈ C.

Clearly, the class of monotone mappings includes the class of α-inverse-strongly
monotone mappings.

Recall that a mapping T : C → H is said to be pseudocontractive if

〈x− y, Tx− Ty〉 ≤ ‖x− y‖2,

and T is said to be k-strictly pseudocontractive if there exists a constant k ∈
[0, 1) such that

〈x − y, Tx− Ty〉 ≤ ‖x− y‖2 − k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

where I is the identity mapping. A mapping T of C into itself is called nonex-

pansive if ‖Tx− Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C. Obviously, the class of k-strictly
pseudocontractive mappings includes the class of nonexpansive mappings as
a subclass, and the class of pseudocontractive mappings includes the class
of strictly pseudocontractive mappings as a subclass. Moreover, this inclu-
sion is strict due to an example in [8] (see, also Example 5.7.1 and Example
5.7.2 in [2]). Fixed point problems for pseudocontractive mappings and strictly
pseudocontractive mappings were studied by many authors, see, for example,
[1, 9, 14, 16, 19, 22, 23, 24, 35] and the references therein.

Recently, many authors have introduced some iterative algorithms for finding
a common element of the set of the solutions of the GMEP, the GEP, the
MEP, the EP, and the VIP and the set of fixed points of a countable family of
nonexpansive mappings, and have proved strong convergence of the sequences
generated by the proposed iterative algorithms; see [6, 13, 15, 17, 25, 26, 27, 29,
30, 31, 32] and the references therein. Also we refer to [4, 5, 7, 18, 21] for the
GMEP, the GEP, the EP, and the VIP combined with the fixed point problem
for nonexpansive semigroups and strictly pseudocontractrive mappings.

In particular, in 2007, Tada and Takahashi [29] introduced an iterative al-
gorithm for finding a common element of the set of solutions of the EP and the
set of fixed points of a nonexpansive mapping, and proved weak convergence of
the sequence generated by the proposed iterative algorithm. In 2008, Moudafi
[25] proposed an iterative algorithm for finding a common element of the set of



WEAK CONVERGENCE THEOREMS 1181

solutions of the GEP related to an α-inverse-strongly monotone mapping B and
the set of fixed points of a nonexpansive mapping, and obtained weak conver-
gence of the sequence generated by the proposed iterative algorithm. In 2009,
Ceng et al. [5] presented an iterative algorithm for finding a common element of
the set of solutions of the EP and the set of fixed points of a k-strictly pseudo-
contractive mapping, and showed weak convergence of the sequence generated
by the proposed iterative algorithm. In 2012, Jung [18] considered an iterative
algorithm for finding a common element of the set of solutions of the GMEP
related to α-inverse-strongly monotone mapping B, the set of solutions of the
VIP for β-inverse-strongly monotone mapping F and the set of fixed points of
a k-strictly pseudocontractive mapping, and established weak convergence of
the sequence generated by the proposed iterative algorithm.

On the other hand, in 2003, Takahashi and Toyoda [31] proposed an itera-
tive algorithm for finding a common element of the set of solutions of the VIP
for α-inverse-strongly monotone mapping F and the set of fixed points of a
nonexpansive mapping, and proved weak convergence of the sequence gener-
ated by the proposed iterative algorithm. In 2009, Plubtieng and Kumam [27]
extended the result of Takahashi and Toyoda [31] to the case of a countable
family of nonexpansive mappings, and as an application, they obtained weak
convergence of an iterative algorithm for finding a common element of the set
of solutions of the VIP for α-inverse-strongly monotone mapping F and the set
of solutions of the EP.

In this paper, motivated and inspired by the above mentioned results, we
introduce a new iterative algorithm for finding a common element of the set
of solutions of the GMEP related to a continuous monotone mapping B, the
set of solutions of the VIP for a continuous monotone mapping F and the
set of fixed points of a continuous pseudocontractive mapping T in a Hilbert
space. We prove weak convergence of the sequence generated by the proposed
iterative algorithm to a common element of three sets. As direct consequences,
we obtain the results for the GEP related to a continuous monotone mapping
B, the MEP and the EP, combined with the VIP for a continuous monotone
mapping F and the fixed point problem for a continuous pseudocontractive
mapping T . Our results extend, improve, and develop some recent results in
the literature.

2. Preliminaries and lemmas

In the following, we denote by Fix(T ) the set of fixed points of the mapping
T , and we denote the strong convergence and the weak convergence of {xn} to
x by xn → x and xn ⇀ x, respectively.

Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H . In H , we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1 − λ)‖x− y‖2
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for all x, y ∈ H and λ ∈ R. For every point x ∈ H , there exists a unique
nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖

for all y ∈ C. PC is called the metric projection of H onto C. PC(x) is
characterized by the property:

(2.1) u = PC(x) ⇐⇒ 〈x− u, u− y〉 ≥ 0 for all x ∈ H, y ∈ C.

It is also well known that H satisfies the Opial condition, that is, for any
sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.
For solving the GMEP, the GEP, the MEP, and the EP for a bifunction

Θ : C × C → R, let us assume that Θ satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous.

We can prove the following lemma by using the same method as in [20, 34],
and so we omit its proof.

Lemma 2.1. Let C be a nonempty closed convex subset of H. Let Θ be a

bifunction form C×C to R satisfies (A1)–(A4), and let ϕ : C → R be a proper

lower semicontinuous and convex function. Let B : C → H be a continuous

monotone mapping. Then, for r > 0 and x ∈ H, there exists u ∈ C such that

Θ(u, y) + 〈Bu, y − u〉+ ϕ(y)− ϕ(u) +
1

r
〈y − u, u− x〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr : H → C as follows:

Krx =

{

u ∈ C : Θ(u, y) + 〈Bu, y − u〉

+ ϕ(y)− ϕ(u) +
1

r
〈y − u, u− x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H and r > 0. Then, the following hold:

(i) For each x ∈ H, Kr(x) 6= ∅;
(ii) Kr is single-valued;
(iii) Kr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Krx−Kry‖
2 ≤ 〈Krx−Kry, x− y〉;

(iv) Fix(Kr) = GMEP (Θ, ϕ,B);
(v) GMEP (Θ, ϕ,B) is closed and convex.
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We also need the following lemmas for the proof of our main results.

Lemma 2.2 ([28]). Let H be a real Hilbert space, let {αn} be a sequence of

real numbers such that 0 < a ≤ αn ≤ b < 1 for all n ≥ 1, and let {vn} and

{wn} be sequences in H such that, for some c

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c, and lim sup
n→∞

‖αnvn + (1− αn)wn‖ = c.

Then limn→∞ ‖vn − wn‖ = 0.

Lemma 2.3 ([31]). Let C be a nonempty closed convex subset of a real Hilbert

spaces H, and let {xn} be a sequence in H. If

‖xn+1 − x‖ ≤ ‖xn − x‖, ∀x ∈ C and ∀n ≥ 1,

then {PCxn} converges strongly to some z ∈ C, where PC stands for the metric

projection of H onto C.

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [33], respec-
tively.

Lemma 2.4 ([33]). Let C be a closed convex subset of a real Hilbert space H.

Let F : C → H be a continuous monotone mapping. Then, for r > 0 and

x ∈ H, there exists z ∈ C such that

〈Fz, y − z〉+
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Fr : H → C by

Frx =

{

z ∈ C : 〈Fz, y − z〉+
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

.

Then the following hold:

(i) Fr is single-valued;
(ii) Fr is firmly nonexpansive, that is,

‖Frx− Fry‖
2 ≤ 〈Frx− Fry, x− y〉, ∀x, y ∈ H ;

(iii) Fix(Fr) = V I(C,F );
(iv) V I(C,F ) is a closed convex subset of C.

Lemma 2.5 ([33]). Let C be a closed convex subset of a real Hilbert space H.

Let T : C → H be a continuous pseudocontractive mapping. Then, for r > 0
and x ∈ H, there exists z ∈ C such that

〈Tz, y − z〉 −
1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{

z ∈ C : 〈Tz, y − z〉 −
1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C

}

.

Then the following hold:

(i) Tr is single-valued;
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(ii) Tr is firmly nonexpansive, that is,

‖Trx− Try‖
2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H ;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C.

3. Iterative algorithms

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space;
• C is a nonempty closed convex subset of H ;
• Θ is a bifunction form C × C to R satisfies (A1)–(A4);
• ϕ : C → R is a proper lower semicontinuous and convex function;
• B : C → H is a continuous monotone mapping;
• GMEP (Θ, ϕ,B) is the set of solutions of the GMEP related to B:
• Krn : H → C is a mapping defined by

Krnx =

{

u ∈ C : Θ(u, y) + 〈Bu, y − u〉

+ ϕ(y)− ϕ(u) +
1

rn
〈y − u, u− x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H and for rn ∈ (0,∞) and lim infn→∞ rn > 0;
• F : C → H is a continuous monotone mapping;
• V I(C,F ) is the set of solutions of the VIP for F ;
• T : C → C is a continuous pseudocontractive mapping;
• Frn : H → C is a mapping defined by

Frnx =

{

z ∈ C : 〈Fz, y − z〉+
1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H and for rn ∈ (0,∞) and lim infn→∞ rn > 0;
• Trn : H → C is a mapping defined by

Trnx =

{

z ∈ C : 〈Tz, y − z〉 −
1

rn
〈y − z, (1 + rn)z − x〉 ≤ 0, ∀y ∈ C

}

for all x ∈ H and for rn ∈ (0,∞) and lim infn→∞ rn > 0;
• Ω1 := GMEP (Θ, ϕ,B) ∩ V I(C,F ) ∩ Fix(T ) 6= ∅.

By Lemma 2.1, Lemma 2.4 and Lemma 2.5, we note that Krn , Frn and Trn are
nonexpansive, and Fix(Krn) = GMEP (Θ, ϕ,B), Fix(Frn) = V I(C,F ) and
Fix(Trn) = Fix(T ).

Now, we propose a new iterative algorithm for finding a common point of
the set of solutions of the GMEP related to a continuous monotone mapping
B, the set of solutions of the VIP for a continuous monotone mapping F , and
the set of fixed points of a continuous pseudocontractive mapping T .
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Algorithm 3.1. For an arbitrarily chosen x1 ∈ C, let the iterative sequences
{xn} and {un} be generated by

(3.1)











Θ(un, y) + 〈Bun, y − un〉+ ϕ(y)− ϕ(un)

+ 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)TrnFrnKrnxn, ∀n ≥ 1,

where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and rn ∈ (0,∞) and lim infn→∞ rn >

0.

Theorem 3.1. The sequences {xn} and {un} generated by Algorithm 3.1 con-

verge weakly to z ∈ Ω1, where z = limn→∞ PΩ1
(xn).

Proof. From now, we put un = Krnxn, zn = Frnun and wn = Trnzn. Without
loss of generality, we assume rn > c > 0 for ∀n ≥ 1 and some c ∈ R.

We divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Ω1 :=

GMEP (Θ, ϕ,B) ∩ V I(C,F ) ∩ Fix(T ). Then, from Lemma 2.1(iv), Lemma
2.4(iii) and Lemma 2.5(iii), it follows that p = Krnp, p = Frnp and p = Trnp.
From zn = Frnun and the nonexpansivity of Frn , we get

(3.2) ‖zn − p‖ = ‖Frnun − Frnp‖ ≤ ‖un − p‖.

Also, by un = Krnxn ∈ C and the nonexpansivity of Krn ,

‖un − p‖ = ‖Krnxn −Krnp‖ ≤ ‖xn − p‖,

and so

(3.3) ‖zn − p‖ ≤ ‖xn − p‖.

By using the convexity of ‖ · ‖2, we also obtain

(3.4)

‖xn+1 − p‖2 = ‖αn(xn − p) + (1 − αn)(Trnzn − p)‖2

≤ αn‖xn − p‖2 + (1 − αn)‖Trnzn − p‖2

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2

≤ αn‖xn − p‖2 + (1 − αn)‖xn − p‖2

= ‖xn − p‖2,

and hence

(3.5) ‖xn+1 − p‖ ≤ ‖xn − p‖.

So, there exists r ∈ R such that

r = lim
n→∞

‖xn − p‖.

Therefore {xn} is bounded, and so are {un} and {zn} by (3.2) and (3.3).
Moreover, from

‖wn − p‖ = ‖Trnzn − p‖ ≤ ‖zn − p‖,

{wn} is also bounded.



1186 J. S. JUNG

Step 2. We show that limn→∞ ‖xn − un‖ = 0. To this end, let p ∈ Ω1.
Since Krn is firmly nonexpansive and un = Krnxn, we have

‖un − p‖2 = ‖Krn(xn)−Krn(p)‖
2

≤ 〈Krn(xn)−Krn(p), xn − p〉

= 〈un − p, xn − p〉

=
1

2
(‖un − p‖2 + ‖xn − p‖2)−

1

2
‖(xn − p)− (un − p)‖2

=
1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖

2),

and hence

(3.6) ‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖
2.

On the other hand, by using the convexity of ‖ · ‖2, (3.2) and (3.6), we get

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖un − p‖2

≤ αn‖xn − p‖2 + (1− αn)(‖xn − p‖2 − ‖xn − un‖
2).

This implies that

(1− b)‖xn − un‖
2 ≤ (1− αn)‖xn − un‖

2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Since limn→∞ ‖xn+1 − p‖2 = limn→∞ ‖xn − p‖2, we obtain

lim
n→∞

‖xn − un‖ = 0.

Step 3. We show that limn→∞ ‖xn − wn‖ = limn→∞ ‖xn − Trnzn‖ = 0.
Indeed, let p ∈ Ω1 and r = limn→∞ ‖xn − p‖. Since Trn nonexpansive and
Fix(T ) = Fix(Trn), it follows from (3.3) that

‖Trnzn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖,

and hence lim supn→∞ ‖Trnzn − p‖ ≤ r. By (3.4), we also get

lim sup
n→∞

‖αn(xn − p) + (1 − αn)(Trnzn − p)‖

= lim sup
n→∞

‖xn+1 − p‖

≤ lim sup
n→∞

‖xn − p‖ = lim
n→∞

‖xn − p‖ = r.

By Lemma 2.2, we obtain limn→∞ ‖xn − wn‖ = limn→∞ ‖xn − Trnzn‖ = 0.
Step 4. We show that limn→∞ ‖un − zn‖ = 0.. Since Frn is firmly nonex-

pansive, using zn = Frnun and p = Frnp, we have

‖zn − p‖2 = ‖Frnun − Frnp‖
2

≤ 〈Frnun − Frnp, un − p〉

= 〈zn − p, un − p‖
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=
1

2
(‖zn − p‖2 + ‖un − p‖2)−

1

2
‖zn − un‖

2,

and hence
‖zn − p‖2 ≤ ‖un − p‖2 − ‖zn − un‖

2

≤ ‖xn − p‖2 − ‖zn − un‖
2.

So, we obtain

‖xn+1 − p‖2 ≤ α‖xn − p‖2 + (1− αn)‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)(‖xn − p‖2 − ‖zn − un‖
2)

= ‖xn − p‖2 − (1 − αn)‖zn − un‖
2.

From conditions αn ∈ [a, b] ⊂ (0, 1), it follows

(1− b)‖zn − un‖
2 ≤ (1− αn)‖zn − un‖

2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

By r = limn→∞ ‖xn − p‖, we conclude

lim
n→∞

‖zn − un‖ = 0.

Step 5. We show that limn→∞ ‖wn − zn‖ = 0. Indeed, from Step 2, Step 3
and Step 4, it follows that

‖wn − zn‖ ≤ ‖wn − xn‖+ ‖xn − un‖+ ‖un − zn‖ → 0.

Step 6. We show that any of its weak cluster point z of {xn} belongs in
Ω1 and xn ⇀ z. In this case, there exists a subsequence {xni

} which converges
weakly to z.

We will show that z ∈ Ω1. First, by the same argument as in the proof of
[26, Theorem 3.1], we can obtain that z ∈ GMEP (Θ, ϕ,B). For the sake of
completeness, we include its proof. From un = Krnxn, it follows that

Θ(un, y) + 〈Bun, y − un〉+ ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

By (A2), we deduce

〈Bun, y − un〉+ ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ Θ(y, un), ∀y ∈ C,

and hence

(3.7)

〈Buni
, y − uni

〉+ ϕ(y)− ϕ(uni
)

+
1

rni

〈y − uni
, uni

− xni
〉 ≥ Θ(y, uni

), ∀y ∈ C.

Set yt = ty + (1 − t)z for all t ∈ (0, 1] and y ∈ C. Since y ∈ C and z ∈ C, we
get yt ∈ C. Thus, it follows from (3.7) that

〈Byt, yt − uni
〉 ≥ 〈Byt, yt − uni

〉 − ϕ(yt) + ϕ(uni
)− 〈Buni

, yt − uni
〉

− 〈yt − uni
,
uni

− xni

rni

〉+Θ(yt, uni
)
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= 〈Byt −Buni
, yt − uni

〉

− ϕ(yt) + ϕ(uni
)− 〈yt − uni

,
uni

− xni

rni

〉+Θ(yt, uni
).

From the fact that ‖un − xn‖ → 0 by Step 2, we obtain that
uni

−xni

rni

→ 0

and uni
⇀ z as i → ∞. Moreover, from the monotonicity of B, we get

〈yt − uni
, Byt −Buni

〉 ≥ 0. So, from (A4) and the weak lower semicontinuity
of ϕ, it follows that

(3.8) 〈Byt, yt − z〉 ≥ −ϕ(yt) + ϕ(z) + Θ(yt, z) as i → ∞.

By (A1), (A4) and (3.8), we also have

0 = Θ(yt, yt) + ϕ(yt)− ϕ(yt)

≤ tΘ(yt, y) + (1− t)Θ(yt, z) + tϕ(y) + (1− t)ϕ(z)− ϕ(yt)

≤ t[Θ(yt, y) + ϕ(y)− ϕ(yt)] + (1− t)〈yt − z,Byt〉

= t[Θ(yt, y) + ϕ(y)− ϕ(yt)] + (1− t)t〈y − z,Byt〉,

and hence

(3.9) 0 ≤ Θ(yt, y) + ϕ(y)− ϕ(yt) + (1− t)〈Byt, y − z〉.

Letting t → 0 in (3.9) yields that for each y ∈ C,

Θ(z, y) + 〈Bz, y − z〉+ ϕ(y)− ϕ(z) ≥ 0.

This implies that z ∈ GMEP (Θ, ϕ,B).
Second, we show that z ∈ V I(C,F ). In fact, from the definition of zni

=
Frni

uni
, we have

(3.10) 〈Fzni
, y − zni

〉+ 〈y − zni
,
zni

− uni

rni

〉 ≥ 0, ∀y ∈ C.

Set vt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then, vt ∈ C. So, from
(3.10), it follows that

(3.11)

〈Fvt, vt − zni
〉

≥ 〈Fvt, vt − zni
〉 − 〈Fzni

, vt − zni
〉 − 〈vt − zni

,
zni

− uni

rni

〉

= 〈Fvt − Fzni
, vt − zni

〉 − 〈vt − zni
,
zni

− uni

rni

〉.

By Step 2 and Step 4, we obtain that
zni

−uni

rni

→ 0 and zni
⇀ z as i → ∞.

Since F is monotone, we also have that 〈Fvt − Fzni
, vt − zni

〉 ≥ 0. Thus, it
follows from (3.11) that

0 ≤ lim
n→∞

〈Fvt, vt − zni
〉 = 〈Fvt, vt − z〉,

and hence

〈Fvt, v − z〉 ≥ 0, ∀v ∈ C.
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If t → 0, the continuity of F yields that

〈Fz, v − z, 〉 ≥ 0, ∀v ∈ C.

This implies that z ∈ V I(C,F ).
Thirdly, we prove that z ∈ Fix(T ). In fact, from the definition of wni

=
Trni

zni
, we have

(3.12) 〈Twni
, y − wni

〉 −
1

rni

〈y − wni
, (1 + rni

)wni
− zni

〉 ≤ 0, ∀y ∈ C.

Put vt = tv + (1 − t)z for all t ∈ (0, 1] and v ∈ C. Then, vt ∈ C, and from
(3.12) and pseudocontractivity of T , it follows that

(3.13)

〈Tvt, wni
− vt〉

≥ 〈Tvt, wni
− vt〉+ 〈Twni

, vt − wni
〉

−
1

rni

〈vt − wni
, (1 + rni

)wni
− zni

〉

= − 〈Tvt − Twni
, vt − wni

〉 −
1

rni

〈vt − wni
, wni

− zni
〉

− 〈vt − wni
, wni

〉

≥ − ‖vt − wni
‖2 −

1

rni

〈vt − wni
, wni

− zni
〉 − 〈vt − wni

, wni
〉

= − 〈vt − wni
, vt〉 − 〈vt − wni

,
wni

− zni

rni

〉.

By Step 3 and Step 5, we get that
wni

−zni

rni

→ 0 and wni
⇀ z as i → ∞.

Therefore, as i → ∞ in (3.13), it follows that

〈Tvt, z − vt, 〉 ≥ 〈z − vt, vt〉,

and hence
−〈Tvt, v − z〉 ≥ −〈v − z, vt〉, ∀v ∈ C.

Letting t → 0 and using the fact that T is continuous, we get

−〈Tz, v − z, 〉 ≥ −〈v − z, z〉, ∀v ∈ C.

Now, let v = Tz. Then we obtain z = Tz and hence z ∈ Fix(T ). Therefore,
z ∈ Ω1.

Now, we prove that xn ⇀ z ∈ Ω1. To this end, let {xnj
} be another

subsequence of {xn} such that xnj
⇀ z′. Then, by the above argument, z′ ∈

Ω1. If z 6= z′, then the Opial condition yields

lim
n→∞

‖xn − z‖ = lim inf
i→∞

‖xni
− z‖

< lim inf
i→∞

‖xni
− z′‖

= lim
n→∞

‖xn − z′‖

= lim inf
j→∞

‖xnj
− z′‖



1190 J. S. JUNG

< lim inf
j→∞

‖xnj
− z‖

= lim
n→∞

‖xn − z‖,

which is a contradiction. So, z = z′. Thus, we conclude that

xn ⇀ z ∈ Ω1.

Also from Step 2, it follows that un ⇀ z ∈ Ω1.
Step 7. We show that z = limn→∞ PΩ1

(xn). For this purpose, let vn =
PΩ1

(xn). Since z ∈ Ω1, it follows from (2.1) that

〈xn − vn, vn − z〉 ≥ 0.

Since ‖xn+1 − p‖ ≤ ‖xn − p‖ for p ∈ Ω1, Lemma 2.3 implies that vn → z0 for
some z0 ∈ Ω1. Since xn ⇀ z by Step 6, we obtain

〈z − z0, z0 − z〉 ≥ 0,

and hence z = z0 = limn→∞ PΩ1
(xn). This completes the proof. �

If we take C ≡ H in Theorem 3.1, then we obtain the following result.

Corollary 3.2. Let Ω2 := GMEP (Θ, ϕ,B)∩F−1(0)∩Fix(T ). The sequences

{xn} and {un} generated by Algorithm 3.1 converge weakly to z ∈ Ω2, where

z = limn→∞ PΩ2
(xn).

Proof. Since D(F ) = H , we have V I(H,F ) = F−1(0). Thus the result follows
from Theorem 3.1. �

Now, in order to obtain direct consequences of Theorem 3.1, we recall special
cases of the GMEP again.

If ϕ = 0 in (1.1), then the GMEP reduces the following generalized equilib-
rium problem (for short, GEP) of finding x ∈ C such that

Θ(x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of the GEP is denoted by GEP (Θ, B).
If B = 0 in (1.1), then the GMEP reduces the following mixed equilibrium

problem (for short, MEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

The set of solutions of the MEP is denoted by MEP (Θ, ϕ).
If B = 0 and ϕ = 0 in (1.1), then the GMEP reduces the following equilib-

rium problem (for short, EP) of finding x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C.

The set of solutions of the EP is denoted by EP (Θ).
If we take ϕ ≡ 0 in Theorem 3.1, then we obtain the following result.
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Corollary 3.3. Let Ω3 := GEP (Θ, B)∩V I(C,F )∩Fix(T ) 6= ∅, and let {xn}
and {un} be sequences generated by x1 ∈ C and

{

Θ(un, y) + 〈Bun, y − un〉+
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)TrnFrnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω3, where z = limn→∞ PΩ3
(xn).

If F ≡ 0, then Fr in Lemma 2.4 is the identity mapping. Thus, from
Corollary 3.3, we have the following corollary.

Corollary 3.4. Let Ω4 := GEP (Θ, B) ∩ Fix(T ) 6= ∅, and let {xn} and {un}
be sequences generated by x1 ∈ C and

{

Θ(un, y) + 〈Bun, y − un〉+
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1 − αn)Trnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω4, where z = limn→∞ PΩ4
(xn).

It we take B ≡ 0 and ϕ ≡ 0 in Theorem 3.1, we obtain the following result.

Corollary 3.5. Let Ω5 := EP (Θ)∩V I(C,F )∩Fix(T ) 6= ∅, and let {xn} and

{un} be sequences generated by x1 ∈ C and
{

Θ(un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)TrnFrnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω5, where z = limn→∞ PΩ5
(xn).

It we take F ≡ 0 in Corollary 3.5, we obtain the following corollary.

Corollary 3.6. Let Ω6 := EP (Θ) ∩ Fix(T ) 6= ∅, and let {xn} and {un} be

sequences generated by x1 ∈ C and
{

Θ(un, y) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)Trnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω6, where z = limn→∞ PΩ6
(xn).

If we take B ≡ 0 in Theorem 3.1, we get the following result.

Corollary 3.7. Let Ω7 := MEP (Θ, ϕ) ∩V I(C,F )∩Fix(T ) 6= ∅, and let {xn}
and {un} be sequences generated by x1 ∈ C and

{

Θ(un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)TrnFrnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω7, where z = limn→∞ PΩ7
(xn).

If we take F ≡ 0 in Corollary 3.7, we obtain the following corollary.
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Corollary 3.8. Let Ω8 := MEP (Θ, ϕ) ∩ Fix(T ) 6= ∅, and let {xn} and {un}
be sequences generated by x1 ∈ C and

{

Θ(un, y) + ϕ(y)− ϕ(un) +
1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnxn + (1− αn)Trnun, ∀n ≥ 1.

Then {xn} and {un} converge weakly to z ∈ Ω8, where z = limn→∞ PΩ8
(xn).

Remark 3.9. 1) For finding a common element of GMEP (Θ, ϕ,B) ∩ V I(C,F )
∩ Fix(T ), where B is a continuous monotone mapping, F is a continuous mono-
tone mapping, and T is a continuous pseudocontractive mapping, Theorem 3.1
is a new ones different from previous those introduced by several authors. Con-
sequently, in the sense that our convergence is for the more general class of con-
tinuous monotone and continuous pseudocontractive mappings, our results im-
prove, develop and complement the corresponding results, which were obtained
recently by several authors in references; for example, see [5, 18, 25, 29, 31] and
references therein.

2) We recall some special cases of the GMEP as follows:

(i) If Θ(x, y) = 0 for all x, y ∈ C in (1.1), the GMEP reduces the following
generalized variational inequality problem (for short, GVI) of finding
x ∈ C such that

〈Bx, y − x〉 + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

(ii) If B = 0 and Θ(x, y) = 0 for all x, y ∈ C in (1.1), the GMEP reduces
the following minimization problem (for short, MP) finding x ∈ C such
that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C.

Applying Theorem 3.1, we can also establish the new corresponding results for
the GVI and the MP.
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