• Title/Summary/Keyword: Variable Structure Systems

Search Result 520, Processing Time 0.027 seconds

A new Dynamic Switching Function for Output feedback Variable Structure Control (출력궤환가변구조제어를 위한 동적스위칭함수의 제안과 응용)

  • 이기상;송명현;조상호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.706-717
    • /
    • 1991
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control systems,a new switching function with a dynamic structure is proposed. And the control performances of the output feedback variable structure control systems with the dynamic switching function are evaluated through simulation studies. The proposed dynamic switching function is driven by small number of measured output and input variables while conventional static switching function requires full state information. Therefore, the proposition of the dynamic swiching function makes practical implementation of output feedback variable structure control scheme possible for the systems with unmeasurable state variables, high order systems and large scale systems that the conventional variable structure control schemes with static switching function cannot be applied. In the variable structure control systems with the dynamic switching function, desired control performance can be guaranteed by proper choice of design parameters such as poles of switching function dynamic equation and switching control gains even though small number of measured output and input variables are provided as shown in simulation resuls.

  • PDF

Neural Network based Variable Structure Control for a Class of Nonlinear Systems (비선형 시스템 계통에서 신경망에 근거한 가변구조 제어)

  • Kim, Hyeon-Ho;Lee, Cheon-Hui
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.56-62
    • /
    • 2001
  • This paper presents a neural network based variable structure control scheme for nonlinear systems. In this scheme, a set of local variable structure control laws are designed on the basis of the linear models about preselected representative points which cover the range of the system operation of interest. From the combination of the set of local variable structure control laws, neural networks infer the approximate control input in between the operating points. The neural network based variable structure control alleviates the effects of model uncertainties, which cannot be compensated by the control techniques using feedback linearization. It also relaxes the discontinuity in the system’s behavior that appears when the control schemes based on the family of the linear models are applied to nonlinear systems. Simulation results of a ball and beam system, to which feedback linearization cannot be applied, demonstrate the feasibility of the proposed method.

  • PDF

The design of variable structure controller for the systems having the first order dynamic (일차 dynamic을 갖는 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경;강윤관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.179-184
    • /
    • 1991
  • This paper will describe the application for variable structure control theory to the first order dynamic system and verify it's robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC, DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which regards as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

  • PDF

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control (크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

Design of a Discrete Variable Structure Tracking Controller with Adaptive Feedforward Gains (적응 순방향 이득을 갖는 이산가변 구조추종 제어기의 설계)

  • 이성준;이강웅;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.262-268
    • /
    • 1988
  • In this paper conditions are derived, which ensure the existence of a quasi-sliding mode on the control switching hyperplane in discrete variable structure control systems and also remove the reaching phase problem observed in continuous-time variable structure systems. In addition, a discrete variable structure tracking controller which has adaptive properties is devised based on these results. This controller has useful properties, such as small sensitivity to the variation of plant parameters and to disturbances and its performing speed is fast compared to that of other adaptive controller.

  • PDF

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers (크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정)

  • 최한호;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

MIMO Variable Structure Control System with Sliding Sector (슬라이딩 섹터를 갖는 다중 입출력 가변 구조 제어 시스템)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.524-529
    • /
    • 2006
  • In this paper, we propose a method to design variable structure systems with sliding sector for multi-input multi-output systems with mismatched uncertainties in the state matrix. For the uncertain systems we define sliding sectors within which a norm of the state decreases with zero input despite of mismatched uncertainties. Using the notion of the sliding sector we give simple design algorithms of variable structure control laws that can reduce the chattering. Finally, we give a design example in order to show the effectiveness of our method.

High Performance CNC Control Using a New Discrete-Time Variable Structure Control Method (새로운 이산시간 가변구조 제어방법을 이용한 CNC의 고성능 제어)

  • Oh, Seung-Hyun;Kim, Jung-ho;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1053-1060
    • /
    • 2000
  • In this paper, a discrete-time variable structure control method using recursively defined switching function and a decoupled variable structure disturbance compensator is used to achieve high performance circular motion control of a CNC machining center. The discrete-time variable structure control with the decoupled disturbance compensator method developed in this paper uses a recursive switching function defined as the sum of the current tracking error vector and the previous value of the switching function multiplied by a positive constant less than one. This recursive switching function provides much improved performance compared to the method that uses a switching function defined only as a linear combination of the current tracking error. Enhancements in tracking performance are demonstrated in the circular motion control using a CNC milling machine.

  • PDF