• Title/Summary/Keyword: Vapor synthesis

Search Result 389, Processing Time 0.027 seconds

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

Synthesis of Graphene by Plasma Enhanced Chemical Vapor Deposition and Its transfer for Device Application

  • Seo, Dong-Ik;Han, Jeong-Yun;Kim, Eon-Jeong;Park, Wan-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.277-277
    • /
    • 2010
  • In this report, we present a very effective growing method of graphene using plasma enhanced chemical vapor deposition(PECVD). The graphene is successfully grown on copper substrate. Low temperature growing is obtained with methane and hydrogen plasma. The graphene layers are analyzed by Raman spectroscopy and atomic force microscope. We also provide a transfer technique of graphene layer onto silicon substrate to build up various kinds of application devices.

  • PDF

Multivariate Statistical Analysis Approach to Predict the Reactor Properties and the Product Quality of a Direct Esterification Reactor for PET Synthesis (다변량 통계분석법을 이용한 PET 중합공정 중 직접 에스테르화 반응기의 거동 및 생산제품 예측)

  • Kim Sung Young;Chung Chang Bock;Choi Soo Hyoung;Lee Bomsock;Lee Bomsock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.550-557
    • /
    • 2005
  • The multivariate statistical analysis methods, using both multiple linear regression(MLR) and partial least square(PLS), have been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PET) synthesis. On the basis of the set of data including the flow rate of water vapor, the flow rate of EG vapor, the concentration of acid end groups of a product and other operating conditions such as temperature, pressure, reaction times and feed monomer mole ratio, two multi-variable analysis methods have been applied. Their regression and prediction abilities also have been compared. The prediction results are critically compared with the actual plant data and the other mathematical model based results in reliability. This paper shows that PLS method approach can be used for the reasonably accurate prediction of a product quality of a direct esterification reactor in PET synthesis process.

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Thermodynamic Equilibrium Compositions for a $NH_3-AlCl_3-H_2$ Vapor-Phase Reacting System and Synthesis of High-Purity AlN ($NH_3-AlCl_3-H_2$ 기상반응계의 열역학적 평형조성 및 고순도 AIN 합성)

  • 현상훈;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • The synthesis of high-purity AlN by a vapor-phase reaction was investigated using the $NH_3-AlCl_3-H_2$ reacting system. The theoretical yields of AlN were determined from th thermodynamic equilibrium composi-tions. It was shown that the yields above 90% could by obtained even in the range of relatively low temper-ature of 600-1200K. The reaction temperature and the initial amounts/ratios of the reacting gases showed significant effects on the yields but the total pressure did not. The experimental results showed that a high-purity AlN having a needle shape was the only product as a solid phase and its amount produced increased with the reaction temperature. While the degree of agglmera-tion of the synthesized AlN increased with the reaction temperature the size of each particle consisting of the agglomerates was independent of the temperature but grew from 0.09 to 0.115${\mu}{\textrm}{m}$ with the flow rate of NH3. These experimental results were compared with the theoretical aspects for the synthesis of a high-purity AlN.

  • PDF

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber (수평형 CVD 장치에서 기판 위치에 따른 단일벽 탄소나노튜브의 합성 수율 및 직경 분포 고찰)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.357-363
    • /
    • 2019
  • We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes by Thermal Chemical Vapor Deposition (열 화학기상증착법을 이용한 수직 정렬된 단일벽 탄소나노튜브의 합성)

  • Jang, Sung-Won;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Sung-Hwan;Park, Sang-Eun;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Carbon nanotubes have emerged as a promising material for multifaceted applications, such as composited nanofiber, field effect transistors, field emitters, gas sensors due to their extraordinary electrical and physical properties. In particular, synthesis of vertically aligned carbon nanotubes with a high aspect ratio has recently attracted attention for many applications. However, mass production of high-quality single-walled carbon nanotubes is still remain elusive. In this study, an effect of chemical vapor deposition conditions, including catalyst thickness, feedstock flow rate, and growth temperature, on synthesis of carbon nanotube was systematically investigated.

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.