Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.6.357

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber  

Jo, Sung-Il (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Jeong, Goo-Hwan (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.6, 2019 , pp. 357-363 More about this Journal
Abstract
We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.
Keywords
Single-walled carbon nanotubes; Synthesis yield; Diameter distribution; Chemical vapor deposition; Substrate Position; Raman scattering spectroscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, E. H. Kwak, and G. H. Jeong, Dewetting behavior of electron-beam-deposited Au thin films on various substrates: Graphene, Quartz, and $SiO_2$ wafers. Appl. Phys. A, 118 (2015) 389396.
2 조성일, 수평형 열화학기상증착 반응기를 이용한 탄소나노튜브 합성 시 기판 위치에 따른 합성 거동 고찰. 석사 학위 논문, 강원대학교 (2017).
3 C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, and J. A. Rogers, Guided growth of lage-scale, horizontally aligned arrays of singlewalled carbon nanotubes and their use in thinfilm transistors. Small, 1 (2005) 1110-1116.   DOI
4 E. H. Kwak, H. B. Im, and G. H. Jeong, Synthesis of single-walled carbon nanotubes for enhancement of horizontal-alignment and density. J. Kor. Inst. Surf. Eng., 47 (2014) 347-353.   DOI
5 Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett., 84 (2004) 1750.   DOI
6 A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett., 86 (2001) 1118-1121.   DOI
7 H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met., 103 (1999) 2555-2558.   DOI
8 B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim, and K. S. Kim, Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc., 127 (2005) 15336-15337.   DOI
9 Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, and S. Xie, Random networks of singlewalled carbon nanotubes. J. Phys. Chem. B, 108 (2004) 10751-10753.   DOI
10 W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett., 10 (2010) 1645-1651.   DOI
11 J. W. Kim and G. H. Jeong, Carbon nanotube growth on Invar alloy using coal tar pitch. J. Kor. Inst. Surf. Eng., 50 (2017) 516-522.   DOI
12 S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 363 (1993) 603-605.   DOI
13 J. Kong, A. M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292 (1998) 567-574.   DOI
14 M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: present and future commercial applications. Science, 339 (2013) 535-539.   DOI
15 H. Liu, D. Takagi, S. Chiashi, and Y. Homma, The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnol., 20 (2009) 345604.   DOI
16 J. R. S. Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, Controlled synthesis of single-chirality carbon nanotubes. Nature, 512 (2014) 61.   DOI
17 J. Xiao, S. Dunham, P. Liu, Y. Zhang, C. Kocabas, L. Moh, Y. Huang, K. C. Hwang, C. Lu, W. Huang, and J. A. Rogers, Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett., 9 (2009) 4311-4319.   DOI
18 H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, and M. Tsuji, Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett., 408 (2005) 433-438.   DOI
19 M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Carbon nanotube computer. Nature, 501 (2013) 526.   DOI