Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.2.113

Synthesis of Vertically Aligned Single-Walled Carbon Nanotubes by Thermal Chemical Vapor Deposition  

Jang, Sung-Won (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Song, Woo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Kim, Yoo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Kim, Sung-Hwan (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Park, Sang-Eun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Park, Chong-Yun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.2, 2012 , pp. 113-119 More about this Journal
Abstract
Carbon nanotubes have emerged as a promising material for multifaceted applications, such as composited nanofiber, field effect transistors, field emitters, gas sensors due to their extraordinary electrical and physical properties. In particular, synthesis of vertically aligned carbon nanotubes with a high aspect ratio has recently attracted attention for many applications. However, mass production of high-quality single-walled carbon nanotubes is still remain elusive. In this study, an effect of chemical vapor deposition conditions, including catalyst thickness, feedstock flow rate, and growth temperature, on synthesis of carbon nanotube was systematically investigated.
Keywords
Single-walled carbon nanotubes; Thermal chemical vapor deposition; Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).   DOI   ScienceOn
2 M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010).   DOI   ScienceOn
3 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002).   DOI   ScienceOn
4 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
5 D. Ferrer, T. Tanii, I. Matsuys, G. Zhong, S. Okamoto, and H. Kawarada, Appl. Phys. Lett. 88, 033116 (2006).   DOI   ScienceOn
6 S. Y. Lee, D. H. Ryu, J. Y. Hong, M. H. Yeom, J. H. Yang, W. C. Choi, M. H. Kwon, and C. -Y. Park, J. Korean Vacuum Soc. 16, 291 (2007).   DOI
7 A. Javey, J. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).   DOI   ScienceOn
8 Q. Cao, M. -G. Xia, M. Shim, and J. A. Rogers, Adv. Funct. Mater 16, 2355 (2006).   DOI   ScienceOn
9 J. Kong, N. R. Franklin, C. Zhou, M. G Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).   DOI   ScienceOn
10 J. U. Lee, Appl. Phys. Lett. 87, 073101 (2005).   DOI   ScienceOn
11 J. S. Sakamoto, B. Dunn, and J. Electrochem, Soc. 149, A26 (2002).   DOI   ScienceOn
12 S. Y. Kim, W. Song, M. Kim, C. Jeon, W. Jung, W. C. Choi, and C. -Y. Park, Jpn. J. Appl. Phys. 50, 075103 (2011).   DOI
13 W. Song, C. Jeon, Y. S. Kim, Y. T. Kwon, D. S. Jung, S. W. Jang, W. C. Choi, J. S. Park, R. Saito, and C. -Y. Park, ACS Nano 4, 1012 (2010).   DOI   ScienceOn
14 Y. Kim, W. Song, S. Y. Lee, S. Shrestha, C. Jeon, W. C. Choi, M. Kim, and C. -Y. Park, Jpn. J. Appl. Phys. 49, 085101 (2010).   DOI
15 W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, C. -Y. Park, J. Korean Vacuum Soc. 16, 377 (2007).   DOI
16 X. Cui, W. Wei, and W. Chen, Carbon 48, 2782 (2010).   DOI   ScienceOn
17 J. B. In, C. P. Grigoropoulos, A. A. Chernov, and A. Noy, Appl. Phys. Lett. 98, 153102 (2011).   DOI   ScienceOn
18 H. Kim, J. Kang, Y. Kim, B. H. Hong, J. Choi, and S. Iijima, J. Nanosci. Nanotechnol 11, 470 (2011).   DOI   ScienceOn