• Title/Summary/Keyword: Vapor quality

Search Result 594, Processing Time 0.026 seconds

Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates (다양한 금속 기판재료에 따른 그래핀의 유도결합 플라즈마 화학기상 성장 특성)

  • Kim, Dong-Ok;Trung, Tran Nam;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.694-699
    • /
    • 2014
  • We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.

Growth of Organic/Inorganic MAPbI3 Perovskite Thin Films via Chemical Vapor Deposition (화학 기상 증착법을 이용한 유/무기 MAPbI3 페로브스카이트 박막 성장)

  • Jung, Jang-Su;Eom, Jiho;Pammi, S.V.N.;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.315-320
    • /
    • 2020
  • Methylammonium lead iodide (MAPbI3) thin films were grown at low temperatures on glass substrates via 3-zone chemical vapor deposition. Lead iodide (PbI2) and lead bis (dipivaloylmethanate) [Pb(dpm)2] precursors were used as lead sources. Due to the high sublimation temperature (~400℃) of the PbI2 precursor, a low substrate temperature could not be constantly maintained. Therefore, MAPbI3 thin films degraded into the PbI2 phase. In contrast, for the Pb(dpm)2 precursor, a substrate temperature of ~120℃ was maintained because the sublimation temperature of Pb(dpm)2 is as low as 130℃ at a high vapor pressure. As a result, high-quality MAPbI3 thin films were successfully grown on glass substrates using Pb(dpm)2. The rms (root-mean-square) roughness of MAPbI3 thin films formed from Pb(dpm)2 was as low as ~19.2 nm, while it was ~22.7 nm for those formed using PbI2. The grain size of the films formed from Pb(dpm)2 was as large as approximately 350 nm.

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube (마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성)

  • 장세환;정시영;홍영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

An Experimental Study on Evaperation Heat Transfer and Pressure Drop in Plated cleat Exchangers with Different Chevron Angles (판형열교환기의 세브론각에 따른 증발 열전달특성 및 압력강하에 대한 실험적 연구)

  • Kim, Yun-Ho;Lee, Gyu-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.269-277
    • /
    • 2002
  • Experiments on the evaporation heat transfer and pressure drop in the brazed type plate heat exchangers were performed using refrigerants R410A and R22. To investigate the geometric effect, plate heat exchangers with the same pitch and height but different 45$^{\circ}$, 35$^{\circ}$and 20$^{\circ}$chevron angles are used. Tests were conducted fur the ranges of the mass flux of refrigerant from 13 kg/m$^2$s to 34 kg/m$^2$s, the evaporation temperatures of 15$^{\circ}C$, 1$0^{\circ}C$ and 5$^{\circ}C$, vapor quality from 0.15 to 0.95 and the heat flux from 2.5 kW/m$^2$to 8.5 kW/m$^2$. The evaporation heat transfer coefficients and pressure drops were measured. Most of flow patterns are in the chum flow regime and become close to the annular flow for increasing the mass flux and the vapor quality. The heat transfer coefficient increases with increasing the evaporation temperature at a given mass flux in all plate heat exchangers. Also, the pressure drop increases with increasing the mass flux and the quality and decreasing the evaporation temperature and the chevron angle.

High quality SiC single crystal growth by using NbC-coated crucible (NbC 코팅된 도가니를 사용한 고품질의 SiC 단결정 성장)

  • Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • This study was focused to investigate the effect of NbC-coated crucible on the quality of the SiC crystals. Then, the different properties between SiC crystals grown in a conventional graphite crucible and NbC-coated crucible were systematically compared. SiC crystals were grown using the Physical Vapor Transport (PVT) method at a temperature of 2300℃ and a pressure of 5 Torr in Ar atmosphere. After grinding and polishing, the polytype of the grown SiC crystal was analyzed using Raman spectroscopy, and crystallinity was confirmed by HR-XRD. Furthermore, the defect density and the concentration of impurities were analyzed by an optical microscope and a SIMS, respectively.

Effect of Storage Conditions on Quality Stability of Dried Laver(Porphyra tenera) (건조김의 품질 안정성에 미치는 저장 조건의 영향)

  • 조길석
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.32-36
    • /
    • 2003
  • Quality stability of the dried layer Porphyra tenera depending on various light sources, water activities, packaging materials and storage temperatures were investigated by peroxide value and chlorophyll degradation. Major fatty acids of dried layer were 45.7% eicosapentaenoic acid and 13.6% palmitic acid. Quality stability was increased in order of darkness, incandescent and fluorescent increased sharply with the decrease of water activity and temperature, and also improved by the packaging material with strong barriers of water vapor, oxygen and light.

Low Temperature Growth of High-Quality Carbon Nanotubes by Local Surface Joule Heating without Heating Damage to Substrate

  • Heo, Sung-Taek;Lee, Dong-Gu
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.230-233
    • /
    • 2009
  • In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around $1200^{\circ}C$ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at $300^{\circ}C$ by applying 125 V for joule heating as same as carbon nanotubes grown at $900^{\circ}C$.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.