DOI QR코드

DOI QR Code

Growth of Organic/Inorganic MAPbI3 Perovskite Thin Films via Chemical Vapor Deposition

화학 기상 증착법을 이용한 유/무기 MAPbI3 페로브스카이트 박막 성장

  • Jung, Jang-Su (Department of Materials Science and Engineering, Chungnam National University) ;
  • Eom, Jiho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Pammi, S.V.N. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 정장수 (충남대학교 신소재공학과) ;
  • 엄지호 (충남대학교 신소재공학과) ;
  • ;
  • 윤순길 (충남대학교 신소재공학과)
  • Received : 2020.04.08
  • Accepted : 2020.04.13
  • Published : 2020.07.01

Abstract

Methylammonium lead iodide (MAPbI3) thin films were grown at low temperatures on glass substrates via 3-zone chemical vapor deposition. Lead iodide (PbI2) and lead bis (dipivaloylmethanate) [Pb(dpm)2] precursors were used as lead sources. Due to the high sublimation temperature (~400℃) of the PbI2 precursor, a low substrate temperature could not be constantly maintained. Therefore, MAPbI3 thin films degraded into the PbI2 phase. In contrast, for the Pb(dpm)2 precursor, a substrate temperature of ~120℃ was maintained because the sublimation temperature of Pb(dpm)2 is as low as 130℃ at a high vapor pressure. As a result, high-quality MAPbI3 thin films were successfully grown on glass substrates using Pb(dpm)2. The rms (root-mean-square) roughness of MAPbI3 thin films formed from Pb(dpm)2 was as low as ~19.2 nm, while it was ~22.7 nm for those formed using PbI2. The grain size of the films formed from Pb(dpm)2 was as large as approximately 350 nm.

Keywords

References

  1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics, 8, 506 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.134]
  2. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science, 342, 341 (2013). [DOI: https://doi.org/10.1126/science.1243982]
  3. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater., 26, 1584 (2014). [DOI: https://doi.org/10.1002/adma.201305172]
  4. N. G. Park, J. Phys. Chem. Lett., 4, 2423 (2013). [DOI: https://doi.org/10.1021/jz400892a]
  5. B. R. Sutherland and E. H. Sargent, Nat. Photonics, 10, 295 (2016). [DOI: https://doi.org/10.1038/nphoton.2016.62]
  6. L. Dou, Y. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, Nat. Commun., 5, 5404 (2014). [DOI: https://doi.org/10.1038/ncomms6404]
  7. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]
  8. Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (2019).
  9. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater., 13, 897 (2014). [DOI: https://doi.org/10.1038/nmat4014]
  10. J. H. Heo, M. H. Lee, M. H. Jang, and S. H. Im, J. Mater. Chem. A, 4, 17636 (2016). [DOI: https://doi.org/10.1039/C6TA06718B]
  11. B. Wang and T. Chen, Adv. Sci., 3, 1500262 (2016). [DOI: https://doi.org/10.1002/advs.201500262]
  12. M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013). [DOI: https://doi.org/10.1038/nature12509]
  13. M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao, and Z. Fan, Sci. Rep., 5, 14083 (2015). [DOI: https://doi.org/10.1038/srep14083]
  14. S.V.N. Pammi, H. W. Lee, J. H. Eom, and S. G. Yoon, ACS Appl. Energy Mater., 1, 3301 (2018). [DOI: https://doi.org/10.1021/acsaem.8b00505]
  15. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, and H. G. Boyen, Adv. Energy Mater., 5, 1500477 (2015). [DOI: https://doi.org/10.1002/aenm.201500477]
  16. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, and Y. B. Cheng, J. Mater. Chem. A, 3, 8139 (2015). [DOI: https://doi.org/10.1039/C5TA00358J]
  17. A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Adv. Funct. Mater., 24, 3250 (2014). [DOI: https://doi.org/10.1002/adfm.201304022]
  18. T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, Appl. Phys. Lett., 103, 183906 (2013). [DOI: https://doi.org/10.1063/1.4826116]
  19. Y. M. Kim, W. J. Lee, and H. G. Kim, Thin Solid Films, 279, 140 (1996). [DOI: https://doi.org/10.1016/0040-6090(95)08171-2]
  20. J. H. Choi and H. G. Kim, J. Appl. Phys., 74, 6413 (1993). [https://doi.org/10.1063/1.355143]
  21. B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C.T.O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen, and E. H. Sargent, Adv. Mater., 27, 53 (2015). [DOI: https://doi.org/10.1002/adma.201403965]
  22. KOJUNDO CHEMICAL LABORATORY CO.,LTD, Pb(dpm)2, https://www.kojundo.co.jp/dcms_media/other/Pb_dpm_2_EN.pdf (2003).
  23. V. V. Krisyuk, A. E. Turgambaeva, and I. K. Igumenov, Chem. Vap. Deposition, 4, 43 (1998). [DOI: https://doi.org/10.1002/(SICI) 1521-3862(199803)04:02<43::AID-CVDE43>3.0.CO;2-J]