Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.4.315

Growth of Organic/Inorganic MAPbI3 Perovskite Thin Films via Chemical Vapor Deposition  

Jung, Jang-Su (Department of Materials Science and Engineering, Chungnam National University)
Eom, Jiho (Department of Materials Science and Engineering, Chungnam National University)
Pammi, S.V.N. (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.4, 2020 , pp. 315-320 More about this Journal
Abstract
Methylammonium lead iodide (MAPbI3) thin films were grown at low temperatures on glass substrates via 3-zone chemical vapor deposition. Lead iodide (PbI2) and lead bis (dipivaloylmethanate) [Pb(dpm)2] precursors were used as lead sources. Due to the high sublimation temperature (~400℃) of the PbI2 precursor, a low substrate temperature could not be constantly maintained. Therefore, MAPbI3 thin films degraded into the PbI2 phase. In contrast, for the Pb(dpm)2 precursor, a substrate temperature of ~120℃ was maintained because the sublimation temperature of Pb(dpm)2 is as low as 130℃ at a high vapor pressure. As a result, high-quality MAPbI3 thin films were successfully grown on glass substrates using Pb(dpm)2. The rms (root-mean-square) roughness of MAPbI3 thin films formed from Pb(dpm)2 was as low as ~19.2 nm, while it was ~22.7 nm for those formed using PbI2. The grain size of the films formed from Pb(dpm)2 was as large as approximately 350 nm.
Keywords
Chemical vapor deposition; Organic/inorganic perovskite; $MAPbI_3$; Pb precursors; MAI sublimation temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]   DOI
2 Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (2019).
3 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater., 13, 897 (2014). [DOI: https://doi.org/10.1038/nmat4014]   DOI
4 J. H. Heo, M. H. Lee, M. H. Jang, and S. H. Im, J. Mater. Chem. A, 4, 17636 (2016). [DOI: https://doi.org/10.1039/C6TA06718B]   DOI
5 B. Wang and T. Chen, Adv. Sci., 3, 1500262 (2016). [DOI: https://doi.org/10.1002/advs.201500262]   DOI
6 M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013). [DOI: https://doi.org/10.1038/nature12509]   DOI
7 M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao, and Z. Fan, Sci. Rep., 5, 14083 (2015). [DOI: https://doi.org/10.1038/srep14083]   DOI
8 S.V.N. Pammi, H. W. Lee, J. H. Eom, and S. G. Yoon, ACS Appl. Energy Mater., 1, 3301 (2018). [DOI: https://doi.org/10.1021/acsaem.8b00505]   DOI
9 B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, and H. G. Boyen, Adv. Energy Mater., 5, 1500477 (2015). [DOI: https://doi.org/10.1002/aenm.201500477]   DOI
10 Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, and Y. B. Cheng, J. Mater. Chem. A, 3, 8139 (2015). [DOI: https://doi.org/10.1039/C5TA00358J]   DOI
11 A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Adv. Funct. Mater., 24, 3250 (2014). [DOI: https://doi.org/10.1002/adfm.201304022]   DOI
12 T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, Appl. Phys. Lett., 103, 183906 (2013). [DOI: https://doi.org/10.1063/1.4826116]   DOI
13 Y. M. Kim, W. J. Lee, and H. G. Kim, Thin Solid Films, 279, 140 (1996). [DOI: https://doi.org/10.1016/0040-6090(95)08171-2]   DOI
14 J. H. Choi and H. G. Kim, J. Appl. Phys., 74, 6413 (1993). [https://doi.org/10.1063/1.355143]   DOI
15 B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C.T.O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen, and E. H. Sargent, Adv. Mater., 27, 53 (2015). [DOI: https://doi.org/10.1002/adma.201403965]   DOI
16 KOJUNDO CHEMICAL LABORATORY CO.,LTD, Pb(dpm)2, https://www.kojundo.co.jp/dcms_media/other/Pb_dpm_2_EN.pdf (2003).
17 V. V. Krisyuk, A. E. Turgambaeva, and I. K. Igumenov, Chem. Vap. Deposition, 4, 43 (1998). [DOI: https://doi.org/10.1002/(SICI) 1521-3862(199803)04:02<43::AID-CVDE43>3.0.CO;2-J]   DOI
18 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics, 8, 506 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.134]   DOI
19 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science, 342, 341 (2013). [DOI: https://doi.org/10.1126/science.1243982]   DOI
20 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater., 26, 1584 (2014). [DOI: https://doi.org/10.1002/adma.201305172]   DOI
21 N. G. Park, J. Phys. Chem. Lett., 4, 2423 (2013). [DOI: https://doi.org/10.1021/jz400892a]   DOI
22 B. R. Sutherland and E. H. Sargent, Nat. Photonics, 10, 295 (2016). [DOI: https://doi.org/10.1038/nphoton.2016.62]   DOI
23 L. Dou, Y. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, Nat. Commun., 5, 5404 (2014). [DOI: https://doi.org/10.1038/ncomms6404]   DOI