• 제목/요약/키워드: Vapor phase growth

검색결과 270건 처리시간 0.04초

InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석 (Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion)

  • 임익태;윤석범
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장 (Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy)

  • 조성룡;김선태
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

수직배향된 산화아연 나노막대의 성장 및 발광특성에 관한 연구 (Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods and their photoluminescent properties)

  • Jeon Yong-Ho;Park Won-Il;Lee Gyu-Cheol
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.174-175
    • /
    • 2002
  • One-dimensional semiconductor nanowires and nanorods have attracted increasing interest due to their unique physical properties and diversity for potential electronic and photonic device applications., Unlike the conventional nanowires fabricated by metal catalyst-assisted vapor-liquid-solid (VLS) method, we developed metalorganic vapor-phase epitaxial (MOVPE) growth for which no catalyst is needed. The structural and photoluminecent properties will also be discussed. (omitted)

  • PDF

The Observation of Nucleation & Growth during Water Vapor Induced Phase Inversion of Chlorinated Poly(vinyl chloride) Solution using SALS

  • Jang, Jae Young;Lee, Young Moo;Kang, Jong Seok
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.61-69
    • /
    • 2004
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the effects of alcohol on phase separation of chlorinated poly(vinyl chloride) (CPVC)/tetrahydrofuran (THF)/alcohol (9/61/30 wt%) solution during water vapor induced phase separation. A typical scattering pattern of nucleation & growth (NG) was observed for all casting solutions of CPVC/THF/alcohol. In the case of the phase separation of CPVC dope solution containing 30 wt% ethanol or n-propanol, the demixing with NG was observed to be heterogeneous. Meanwhile, the phase separation of CPVC dope solution with 30 wt% n-butanol was found to be predominantly homogeneous NG. Although the different phase separation behavior of NG was observed with types of alcohol additives, the resultant surface morphology had no remarkable differences. That is, even though the NG process by water vapor is either homogeneous or heterogeneous, this difference does not play a main role on the final surface morphology. However, it was estimated from the result of hydraulic flux that the phase separation by homogeneous NG provided the membrane geometry with lower resistance in comparison with that by heterogeneous one.

Chloride VPE 법에 의한 메사 구조위에 InP 전류 차단막의 선택적 재성장 (Selective regrowth of InP current blocking layer by chloride vapor phase epitaxy on mesa structures)

  • 장영근;김현수;최훈상;오대곤;최인훈
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.207-212
    • /
    • 1999
  • Undoped InP epilayers with high purity were grown by using $In/PCl_3/H_2$ chloride vapor phase epitaxy. It was found that the growth of InP homoepitaxial layer is optimized at the growth temperature of $630^{\circ}C$ and at the $PCl_3$ molar fraction of $1.2\times10^{-2}$. The carrier concentration of InP epilayer was less than $10^{14} {cm}^{-3}$ from the low temperature (11K) photoluminescence measurement. Growth behavior of undoped InP current blocking layer on reactive ion-etched (RIE) mesas has been investigated for the realization of 1.55 $\mu \textrm m$buried-heterostructure laser diode (BH LD), using chloride vapor phase epitaxy. On the base of InP homoepitaxy, InP current blocking layers were grown at the growth temperatures ranging from $620^{\circ}C$ to $640^{\circ}C$. Almost planar grown surfaces without edge overgrowth were achieved as the growth temperature increased. It implied that higher temperature enhanced the surface diffusion of the growth species on the {111} B planes and suppressed edge overgrowth.

  • PDF

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 N2 양의 변화에 따른 AlN 단결정의 성장 거동에 관한 연구 (A study on the growth behavior of AlN single crystal according to the change of N2 in HVPE propcess)

  • 인경필;강승민
    • 한국결정성장학회지
    • /
    • 제34권2호
    • /
    • pp.61-65
    • /
    • 2024
  • HVPE(Hydride vapor phase epitaxy) 공법은 기체상의 원료를 사용하여 박막 또는 단결정을 제조하는 공법이다. 화학적 기상증착법의 원리를 적용하여 난용융성 또는 고융점의 물질의 단결정을 성장할 수 있는 공법으로서, 질화갈륨(GaN) 단결정을 얻을 수 있는 공법 중 하나이다. 최근 동 공법을 이용하여 질화알루미늄(AlN) 단결정을 성장하고자 하는 연구가 많이 수행되어져 왔으나, 아직은 좋은 결과를 얻지 못하고 있다. 본 연구에서는 AlN 단결정을 HVPE 공법으로 성장하고자 하였다. 성장 공정에서 질소를 운송가스(Carrior gas)로 사용하였으며, 질소(N2)의 양의 변화에 따른 성장 결과를 고찰하여 보았다. 질소의 양이 증가함에 따른 성장 결정의 변화 양상을 확인할 수 있었다. 성장된 AlN 단결정의 형상을 광학 현미경을 사용하여 관찰하였고, 이중결정 X선 회절 분석(DCXRD, Double crystal X-ray diffractometry)을 이용하여, AlN 결정의 생성을 확인함과 동시에 성장된 단결정의 결정성도 알아보았다.

Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘 (Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate)

  • 송원영;신동익;이호준;김형섭;김상우;윤대호
    • 한국결정성장학회지
    • /
    • 제16권6호
    • /
    • pp.256-259
    • /
    • 2006
  • Vapor phase epitaxy(VPE)법을 사용하여 amorphous $SiO_x$. nanowires를 성장시켰다. Ni thin film을 촉매로 사용하여 Si 기판위에 $800{\sim}1100^{\circ}C$ 범위의 온도에서 성장시켰으며, $SiO_x$ nanowires의 성장 메커니즘은 Vapor-liquid-solid(VLS)으로 확인되었다. $SiO_x$ nanowires의 shape와 morphology는 scanning electron microscope(SEM)으로 분석하였으며, cotton-like형태이고 길이는 $10{\mu}m$정도였다. 그리고 구조적 특징은 transmission electron microscope(TEM)으로 관찰하였고, $SiO_x$ nanowires의 성분 분석은 energy dispersed X-ray spectroscopy(EDS)로 하였다. EDX spectrum으로 nanowires가 Si와 O로 구성되어졌음을 확인하였다.

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • 김현호;박성은;김영도;지광선;안세원;이헌민;이해석;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.