• Title/Summary/Keyword: Vapor Fraction

Search Result 173, Processing Time 0.029 seconds

Relative Absorption Edges of GaN/InGaN/GaN Single Quantum Wells and InGaN/GaN Heterostructures by Metalorganic Chemical Vapor Deposition (유기금속화학기상증착법으로 성장된 GaN/InGaN/GaN 단양자 우물층과 InGaN/GaN 이종접합 구조의 광학적 특징)

  • Kim, Je-Won;Son, Chang-Sik;Jang, Yeong-Geun;Choe, In-Hun;Park, Yeong-Gyun;Kim, Yong-Tae;Ambacher, O.;Ctutzmann, M.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.42-45
    • /
    • 1999
  • The room temperature optical transmission spectra of GaN /InGaN/GaN single quantum wells (SQW) and InGaN/GaN heterostructures grwon by low pressure metalorganic chemical vapor deposition have been measured. The dependence of the absorption edges of the GaN/InGaN/GaN SQW on the well width has been determined from the transmission spectra. The result shows that the absorption edge of GaN/InGaN/GaN SQW shifts towards lower energy as increasing the well width. The dependence of the absorption edges of the InGaN/GaN heterostructures on InN mole fraction has also been determined from the transmission spectra. The result is compared with calculated values obtained from Vegards's laws. Our result shows a good agreement with the calculated values.

  • PDF

Controlled Growth of Large-area Mono-, Bi-, and Few-layer Graphene by Chemical Vapor Deposition on Copper Substrate

  • Kim, Yooseok;Lee, Su-il;Jung, Dae Sung;Cha, Myoung-Jun;Kim, Ji Sun;Park, Seung-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.380.2-380.2
    • /
    • 2014
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

Characterization of the Barrier Layers Comprised of Inorganic Compound for Organic Light Emitting Device Applications

  • Kim, Na-Rae;Lee, Yang-Doo;Kim, Jai-Kyeong;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.13-18
    • /
    • 2006
  • Currently, the flexible organic light emitting devices (OLEDs) are investigated. They are very vulnerable to moisture, and thus have been found to show some problems. Thus, an effective barrier layer is needed to protect from moisture in air. We deposited thin films with magnesium oxide (MgO) and silicon oxide $(SiO_{2})$ compounds mixed at various mixture ratios on flexible polyether sulfone (PES) substrates by an electron-beam evaporator to investigate their applizability for transparent barrier applications. In this study, we found that as the MgO fraction increased, thin films comprised of MgO and $(SiO_{2})$ compounds became more amorphous and their surface morphologies become smoother and denser. In addition, zirconium oxide $(ZrO_{2})$ was added to the above-mentioned compound mixtures. $ZrO_{2}$ made thin mixture films more amorphous and made the surface morphology denser and more uniform. The water vapor transmission rates (WVTRs) of the whole films decreased rapidly. The best WVTR was obtained by depositing thin films of Mg-Si-Zr-O compound among the whole thin films. As the thin mixture films became more amorphous, and the surface morphology become denser and more uniform, the WVTRs decreased. Therefore, the thin mixture films became more suitable for flexible OLED applications as transparent passivation layers against moisture in air.

Evaluation of the in vitro biological activity of selected 35 chemicals (35종의 특정 화학성분들의 in vitro 활성 평가)

  • Shin, Han-Jae;Sohn, Hyung-Ok;Park, Chul-Hoon;Lee, Hyeong-Seok;Min, Young-Keun;Hyun, Hak-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2007
  • The objective of this study was to investigate the contribution of various smoke constituents to the toxicological activity of total particulate matter(TPM) or the gas/vapor phase(GVP). These components included phenol compounds, aromatic amines, polycyclic aromatic hydrocarbons, heterocyclic amines, and carbonyl compounds. The mutagenic and cytotoxic potencies were assessed using the Salmonella mutagenicity assay with S. typimurium TA98 strain and the neutral red uptake cytotoxicity assay(NRU) with BALB/c 3T3 fibroblast cells, respectively. The Salmonella mutagenicity test showed that heterocyclic amines exhibited significantly higher levels of toxicity compared to other smoke constituents. Among them, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline(MeIQ) was shown the most mutagenic compound with a specific mutagenicity of $7.9{\times}10^5\;revertants/{\mu}g$. An analysis of the possible contribution revealed that MeIQ account for only 0.85% of the 2R4F-TPM mutagenicity in TA98. NRU data demonstrated that high cytotoxic activity was obtained for hydroquinone, formaldehyde, and acrolein. Based on the results of the present study, the contribution of acrolein to the cytotoxicity of the GVP fraction was calculated as 61%. Thus, a large proportion of the cytotoxic activity of this complex mixture, cigarette smoke gas phase, can be attributed to the acrolein.

Flow Characteristics of Cryogenic Oxidizer in Liquid Propellant Rocket Engine (액체로켓 엔진에서의 극저온 산화제의 유동 특성)

  • 조남경;정용갑;문일윤;한영민;이수용;정상권
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment fur reducing system complexity and the weight. This feature of cryogenic liquid rocket engine results in the situation that cryogenic liquid oxygen flow is easy to be vaporized especially in the vicinity of the manifold and the injector wall. The research in this paper is focused on two-phase flow phenomena of liquid oxygen in rocket engine. Vapor fraction was estimated by comparing the measured two-phase flow pressure drop in engine manifold and the injector with ideal single phase pressure drop. Heat flux into cryogenic flow is estimated by measuring the wall temperature on the engine manifold to examine boiling characteristics. Suitable correlations for cryogenic two-phase flow were also reviewed to see their applicability. In addition, the effect of vapor generation in liquid rocket engine manifold and injector on engine performance and stability was considered.

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

Selection of an Optimal Entrainer for Extractive Distillation of Azeotropic Acetone/Methanol System (Acetone/Methanol계 공비물의 추출증류를 위한 최적 Entrainer 선정)

  • Lee, JoonMan;Ahn, WonSool
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.539-546
    • /
    • 2008
  • A study on the selection of an optimal entrainer as the third component among water, aniline, 1,3-diethylbenzene, furfural, and MEK, for the extractive distillation of an azeotropic acetone/methanol system was performed using both the entrainer effect vapor-liquid equilibrium (VLE) and the relative volatility. In the case of water as the entrainer, a VLE curve without azeotropic point in the range of water composition from 0.3 up to 0.7 mole fraction could be obtained by both the experiment and the calculation using modified-UNIFAC model. For aniline and 1,3-diethylbenzene, however, VLE curve without azeotropic point could be obtained only at compositions above 0.7 mole fraction, which exhibited that they could be hardly utilized as the entrainer. Moreover, both furfural and MEK were verified to be improper entrainer since they formed an azeotropic phase. Relative volatility of water showed greater than 1.0 and increased with compositions, while those of the others decreased non-linearly, exhibiting that only water could be utilized as the proper entrainer for the extractive distillation of azeotropic acetone/methanol system.

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature (수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화)

  • Nam, Hee-Jong;Son, Jong-Ick;Cho, Nam-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.359-365
    • /
    • 2013
  • We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

Investigating Statistical Characteristics of Aerosol-Cloud Interactions over East Asia retrieved from MODIS Satellite Data (MODIS 위성 자료를 이용한 동아시아 에어로졸-구름의 통계적 특성)

  • Jung, Woonseon;Sung, Hyun Min;Lee, Dong-In;Cha, Joo Wan;Chang, Ki-Ho;Lee, Chulkyu
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1065-1078
    • /
    • 2020
  • The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.

The Characteristics of Silicon Nitride Films Grown at Low Temperature for Flexible Display (플렉서블 디스플레이의 적용을 위한 저온 실리콘 질화물 박막성장의 특성 연구)

  • Lim, Nomin;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.816-820
    • /
    • 2013
  • We investigated the characteristics of the silicon oxy-nitride and nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) at the low temperature with a varying $NH_3/N_2O$ mixing ratio and a fixed $SiH_4$ flow rate. The deposition temperature was held at $150^{\circ}C$ which was the temperature compatible with the plastic substrate. The composition and bonding structure of the nitride films were investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Nitrogen richness was confirmed with increasing optical band gap and increasing dielectric constant with the higher $NH_3$ fraction. The leakage current density of the nitride films with a high NH3 fraction decreased from $8{\times}10^{-9}$ to $9{\times}10^{-11}(A/cm^2$ at 1.5 MV/cm). This results showed that the films had improved electrical properties and could be acceptable as a gate insulator for thin film transistors by deposited with variable $NH_3/N_2O$ mixing ratio.