Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.11.1065

Investigating Statistical Characteristics of Aerosol-Cloud Interactions over East Asia retrieved from MODIS Satellite Data  

Jung, Woonseon (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
Sung, Hyun Min (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Lee, Dong-In (Department of Environmental Atmospheric Sciences, Pukyong National University)
Cha, Joo Wan (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
Chang, Ki-Ho (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
Lee, Chulkyu (Convergence Meteorological Research Department, National Institute of Meteorological Sciences)
Publication Information
Journal of Environmental Science International / v.29, no.11, 2020 , pp. 1065-1078 More about this Journal
Abstract
The statistical characteristics of aerosol-cloud interactions over East Asia were investigated using Moderate Resolution Imaging Spectroradiometer satellite data. The long-term relationship between various aerosol and cloud parameters was estimated using correlation analysis, principle component analysis, and Aerosol Indirect Effect (AIE) estimation. In correlation analysis, Aerosol Optical Depth (AOD) was positively Correlated with Cloud Condensation Nuclei (CCN) and Cloud Fraction (CF), but negatively correlated with Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). Fine Mode Fraction (FMF) and CCN were positively correlated over the ocean because of sea spray. In principle component analysis, AOD and FMF were influenced by water vapor. In particular, AOD was positively influenced by CF, and negatively by CTT and CTP over the ocean. In AIE estimation, the AIE value in each cloud layer and type was mostly negative (Twomey effect) but sometimes positive (anti-Twomey effect). This is related to regional, environmental, seasonal, and meteorological effects. Rigorous and extensive studies on aerosol-cloud interactions over East Asia should be conducted via micro- and macro-scale investigations, to determine chemical characteristics using various meteorological instruments.
Keywords
Correlation analysis; Principle component analysis; Aerosol indirect effect; Aerosol; Cloud;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park, S. H., Panicker, A. S., Lee, D. I., Jung, W. S., Jang, S. M., Jang, M., Kim, D., Kim, Y. W., Jeong, H., 2010, Characterization of chemical properties of atmospheric aerosols over Anmyeon (South Korea), a super site under Global Atmosphere Watch, J. Atmos. Chem., 67, 71-86.   DOI
2 Quass, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A., Lohmann, U., Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A., Feingold, G., Hoose, C., Kristjansson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P. A., Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G., Kirkevag, A., Iversen, T., Seland, O., Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H., Lamarque, J. F., Iacono, M. J., Kinne, S., Schulz, M., 2009, Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 8697-8717.   DOI
3 Alam, K. K., Iqbal, M. J., Blaschke, T., Qureshi, S., Khan, G., 2010, Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data, Adv. Space Res., 46, 1162-1176.   DOI
4 Albrecht, B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230.   DOI
5 Houze, R. Jr., 2014, Cloud dynamics, Academic Press 2014, 1-496.
6 Aloysius, M., Monhan, M., Babu, S. S., Parameswaran, K., Moorthy, K. K., 2009, Validation of MODIS derived aerosol optical depth and an investigation on aerosol transport over the South East Arabian Sea during ARMEX-II. Ann. Geophys., 27, 2285-2296.   DOI
7 Balakrishnaiah, G., kumar, K. R., Reddy, B. S. K., Gopal, K. R., Reddy, R. R., Reddy, L. S. S., Swamulu, C., Ahammed, Y. N., Narasimhulu, K., KrishnaMoorthy, K., Babu S. S., 2012, Spatio-temporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data, Atmos. Env., 47, 435-445.   DOI
8 Chung, K. Y., Park, S. U., 1995, Characteristics synoptic features associated with the transport of Yellow sand to Korea, Asia-Pac. J. Atmos. Sci., 31, 45-63.
9 Dipu, S., Prabha, T. V., Pandithurai, G., Dudhia, J., Pfister, G., Rajesh, K., Goswami, B. N., 2013, Impact of elevated aerosol layer on the cloud macrophysical properties prior to monsoon onset, Atmos. Env., 70, 454-467.   DOI
10 Feingold, G., Eberhard, W. L., Veron, D. E., Previdi, M., 2003, First measurements of the Twomey indirect effect using ground based remote sensors, Geophys. Res. Lett., 30, 1287.
11 Intergovernmental Panel on Climate Change (IPCC), Pachauri, R. K. Meyer, L. A., 2015, Climate change 2014: Synthesis report, Cambridge University Press, IPCC, 1-151.
12 Jones, T. A., Christopher, S. A., 2010, Statistical properties of aerosol-cloud-precipitation interactions in South America, Atmos. Chem. Phys., 10, 2287-2305.   DOI
13 Jung, W. S., Panicker, A. S., Lee, D. I., Park, S. H., 2013, Estimates of aerosol indirect effect from Terra MODIS over Republic of Korea, Adv. Meteorol., 2013, 976813.
14 Seinfeld, J. H., Pandis, S. N., 2006, Atmospheric chemistry and physics: From air pollution to climate change, Wiley-Interscience, 1-1232.
15 Rosenfeld, D., Dai, J. X., Yu, Z., Yao, X., Xu, X. Y., Du, C., 2007, Inverse relations between amounts of air pollution and orographic precipitation, Science, 315, 1396-1398.   DOI
16 Rossow, W. B., Schiffer, R. A., 1991, ISCCP cloud data products, Bull. Amer. Meteor. Soc., 72, 2-20.   DOI
17 Rossow, W. B., Schiffer, R. A., 1999, Advances in understanding clouds from ISCCP, Bull. Amer. Meteorol. Soc., 80, 2261-2288.   DOI
18 Shi, Z., Zhang, D., Hayashi, M., Ogata, H., Ji, H., Fujiie, W., 2008, Inluences of sulfate and nitrate on the hygroscopic behavior of couarse dust particles, Atmos. Env., 42, 822-827.   DOI
19 Jung, W. S., Park, S. H., Kang, D. D., Lee, D. I., Kim, D., 2014, Characterization of chemical properties of precipitation at Busan, Korea, 2009, J. Environ. Sci. Int., 23, 275-289.   DOI
20 Kawamoto, K., 2008, Effect of precipitation on water cloud properties over China, Geophys. Res. Lett., 35, L20811.   DOI
21 Song, S. K., Han, S. B., Kim, S. W., 2014, Analysis of meteorological characteristics related to changes in atmospheric environment on Jeju island during 2010-2012, J. Environ. Sci. Int., 23, 1889-1907.   DOI
22 Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152.   DOI
23 Warner, T. T., 2009, Desert meteorology, Cambridge University Press, 1-620.
24 Warren, S. G., Hahn, C. H., London, J., 1986, Global distribution of total cloud cover and cloud type amounts over land, NCAR Technical Note, NCAR/TN-273+STR, DOI: 10.5065/D6GH9FXB.
25 Warren, S. G., Hahn, C. H., London, J., 1988, Global distribution of total cloud cover and cloud type amounts over the ocean, NCAR Technical Note, NCAR/TN-317+STR, DOI: 10.5065/D6QC01D1.
26 Wilks, D. S., 2006, Statistical methods in the atmospheric sciences, Elsevier academic press publication, 1-627.
27 Zhou, L., Hopke, P. K., Paatero, P., Ondov, J. M., Pancras, J. P., Pekney N. J., Davidson, C. I., 2004, Advanced factor analysis for multiple time resolution aerosol composition data, Atmos. Env., 38, 4909-4920.   DOI
28 World Meteorological Organization (WMO), 2018, Peer review report on global precipitation enhancement activities, WWRP 2018-1, WMO, 1-129.
29 Yuan, T., Li, Z., Zhang, R., Fan, J., 2008, Increase of cloud droplet size with aerosol optical depth: an observation and modeling study, J. Geophys. Res., 113, 1-16.
30 Yum, S. S., Kim, B. G., Kim, S. W., Chang, L. S., Kim, S. B., 2011, A review of clouds and Aerosols, Clim. Change Res., 2, 253-267.
31 Zubko, V., Kaufman, Y. J., Burg, R. I., Martines, J. V., 2007, Principal component analysis of remote sensing of aerosols over oceans, IEEE Trans. Geosci. Remote Sens., 45, 730-745.   DOI
32 Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y. J., Rosenfeld, D., Storelvmo, T., Kristjansson, J. E., Berntsen, T. K., Myhre, A., Isaksen, I. S. A., 2007, Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmos. Chem. Phys., 7, 3081-3101.   DOI
33 Kondratyev, K. Y., Ivlev, L. S., Krapivin, V. F., Varostos, C. A., 2006, Atmospheric Aerosol Properties: Formation, Processes and Impacts, Springer-Verlag Berlin Heidelberg, Germany, 1-572.
34 Lee, Y. G., Kim, B. J., Park, G. U., Ahn, B. Y., 2010, Characteristics of precipitation and temperature at Ulleng-do and Dok-do, Korea of recent four years (2005-2008), J. Environ. Sci. Int., 19, 1109-1118.   DOI
35 Levin, Z., Cotton, W. R., 2008, Aerosol pollution impact on precipitation: A Scientic Review, Springer, 1-386.
36 Panicker, A. S., Pandithurai, G., Dipu, S., 2010, Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data, Atmos. Env., 44, 1937-1943.   DOI