• Title/Summary/Keyword: Vapor Deposition Process

Search Result 768, Processing Time 0.027 seconds

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae;Kim, Bo-Hye;Woo, Hee-Gweon;Kim, Su-Kyung;Kim, Do-Heyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.219-223
    • /
    • 2006
  • The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.

Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes (전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치)

  • Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

Temperature Analysis for the Linear Cell in the Vapor Deposition Process

  • Choi Jongwook;Kim Sungcho;Kim Jeongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1329-1337
    • /
    • 2005
  • The OLED (Organic Light Emitting Diodes) display recently used for the information indicating device has many advantages over the LCD (Liquid Crystal Display), and its demand will be increased highly. The linear cell should be designed carefully considering the uniformity of thin film on the substrate. Its design needs to compute the temperature field analytically because the uniformity for the thin film thickness depends on the temperature distribution of the source (organic material). In the present study, the design of the linear cell will be modified or improved on the basis of the temperature profiles obtained for the simplified linear cell. The temperature distributions are numerically calculated through the STAR-CD program, and the grids are generated by means of the ICEM CFD program. As the results of the simplified linear cell, the temperature deviation was shown in the parabolic form among the both ends and the center of the source. In order to reduce the temperature deviation, the configuration of the rectangular ends of the crucible was modified to the circular type. In consequence, the uniform temperature is maintained in the range of about 90 percent length of the source. It is expected that the present methods and results on the temperature analysis can be very useful to manufacture the vapor deposition device.

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Preparation of Large Area $TiO_2$ Thin Films by Low Pressure Chemical Vapor Deposition

  • Jeon, Byeong-Su;Lee, Jung-Gi;Park, Dal-Geun;Sin, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.861-869
    • /
    • 1994
  • Chemical vapor deposition using titanium tetra isopropoxide(TTIP) was employed to investigate effects of process parameters on the uniformity of $TiO_{2}$this films deposited on Indium Tin Oxide (ITO)coated glass. Deposition experiments were carried out at temperatures ranging from $300^{\circ}C$ to $400^{\circ}C$ under the pressure of 0.5~2 torrin a cold wall reactor which can handle 200mm substrate. It was found that the growth rate of $TiO_{2}$was closely related to the reaction temperature and the ractant gas compositions. Apparent activation energy for the deposition rate was 62.7lkJ/mol in the absence of $O_{2}$ and 100.4kj/mol in the presence of $O_{2}$, respectively. Homogeneous reactions in the gas phase were promoted when the total pressure of the reactor was increased. Variance in the film thickness was less than a few percent, but at high deposition rates film thickness was less uniform. Effects of reaction temperature on $TiO_{2}$ thin film characteristic was investigated with SEM, XRD and AES.

  • PDF

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF

Effects of Thermal Heat Treatment Process on the Ferroelectric Properties of ReMnO3 (Re:Ho, Er) Thin Films (ReMnO3(Re:Ho, Er) 박막의 강유전성에 미치는 열처리 공정의 영향)

  • Kim, Eung-Soo;Chae, Jung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.763-769
    • /
    • 2005
  • Ferroelectric $ReMnO_3$(Re:Ho, Er) thin films were deposited on Si(100) substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). Crystallinity and electric properties of $ReMnO_3$(Re:Ho, Er) thin films were investigated as a function of thermal heat treatment process, CHP (Conventional Heat-treatment Process) and RTP (Rapid Thermal Process). $ReMnO_3$(Re:Ho, Er) thin films prepared by RTP showed higher c-axis preferred orientation and homogeneous surface roughness than those prepared by CHP. The remnant polarization of ferroelectric hysteresis loop of $ReMnO_3$(Re:Ho, Er) thin films was strongly dependent on the c­axis preferred orientation of hexagonal single phase, and the leakage current characteristics of thin films were dependent on the homogeneity of grain size as well as surface roughness of thin films.

Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell (결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성)

  • Cho, Kuk-Hyun;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.233-237
    • /
    • 2015
  • Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.

Preparation and Permeation Characteristics of Alumina Composite Membranes by CVD and Evaporation-Oxidation Process (화학증착 및 증발-산화법에 의한 알루미나 복합분리막의 제조 및 투과특성)

  • 안상옥;최두진;현상훈;정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.678-684
    • /
    • 1993
  • Alumina composite membranes were prepared by chemical vapor deposition and evaporation-oxidation process. For CVD process, deposition was carried out using aluminum-tri-isopropoxide at 35$0^{\circ}C$, 2 torr by heterogeneous reaction, and for evaporation-oxidation process, alumina composite membranes were prepared by evaporation of aluminum and dry oxidation at 80$0^{\circ}C$. As deposition time increases, water flux and N2 gas permeability of the composite membranes prepared by both processes were reduced. Applying gas permeation model, permeability and cracking possibility of top layer were evaluated.

  • PDF

The Surface Morphology of ZnO Grown by Metal Organic Chemical Vapor Deposition for an Application of Solar Cell (태양전지응용을 위하여 MOCVD 방법으로 성장된 ZnO 박막의 기판온도에 따른 표면특성)

  • Kim, Do-Young;Kang, Hye-Min;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • We report on the deposition of ZnO films using a metal organic chemical vapor deposition (MOCVD) as a function of pushing pressure and kind of reactant such as oxygen gas and water A diethylzinc (DEZ) is supplied and controlled by Ar pushing pressure through bubbling system. Oxygen gas and water are used as reactant in order to form oxidation. We knew that the surface roughness is related in the process conditions such as reactant kind and DEZ flow rate. A substrate temperature has little role of surface roughness with $O_2$ reactant. However, $H_2O$ reactant makes it to increase over the 20 times. We could get the maximum roughness of 39.16 nm at the 90 sccm of DEZ Ar flow rate, the 8 Pa of $H_2O$ vapor pressure, and the $140^{\circ}C$ of substrate temperature. In this paper, we investigated the ZnO films for the application to the light absorption layer of solar cell layer.