Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.3.177

The Surface Morphology of ZnO Grown by Metal Organic Chemical Vapor Deposition for an Application of Solar Cell  

Kim, Do-Young (School of Electrical and Electronic Engineering, Yonsei University)
Kang, Hye-Min (School of Electrical and Electronic Engineering, Yonsei University)
Kim, Hyung-Jun (School of Electrical and Electronic Engineering, Yonsei University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.3, 2010 , pp. 177-183 More about this Journal
Abstract
We report on the deposition of ZnO films using a metal organic chemical vapor deposition (MOCVD) as a function of pushing pressure and kind of reactant such as oxygen gas and water A diethylzinc (DEZ) is supplied and controlled by Ar pushing pressure through bubbling system. Oxygen gas and water are used as reactant in order to form oxidation. We knew that the surface roughness is related in the process conditions such as reactant kind and DEZ flow rate. A substrate temperature has little role of surface roughness with $O_2$ reactant. However, $H_2O$ reactant makes it to increase over the 20 times. We could get the maximum roughness of 39.16 nm at the 90 sccm of DEZ Ar flow rate, the 8 Pa of $H_2O$ vapor pressure, and the $140^{\circ}C$ of substrate temperature. In this paper, we investigated the ZnO films for the application to the light absorption layer of solar cell layer.
Keywords
ZnO; MOCVD; $H_2O$ reactant; Surface roughness; Solar cell;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Hu and R. G. Gordon, J. Appl. Phys. 71, 880 (1992).   DOI
2 S. Fay, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, Thin Solid Films 515, 8558 (2007).   DOI
3 J. C. Lee, V. Dutta, J. Yoo, J. Yi, J. Song, and K. H. Yoon, Superlattices Microstruct. 42, 369 (2007).   DOI
4 I. Volintiru, M. Creatore, B. J. Kniknie C. I. M. A. Spee, and M. C. M. van de Sanden, J. Appl. Phys. 102, 043709 (2007).   DOI
5 K. H. Lee, N. I. Cho, and H. G. Nam, J. Korean Phys. Soc. 53, 3273 (2008).   DOI
6 Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, K. Y. Tse, and H. H. Hng, J. Appl. Phys. 94, 1597 (2003).   DOI
7 D. Z. Dong and G. J. Fangm, J. Appl. Phys. 101, 033713 (2007).   DOI
8 Makoto Kurimoto, A. B. M. Almamun Ashrafi, Masato Ebihara, Katsuhiro Uesugi, Hidekazu Kumano, and Ikuo Suemune, Physica Status Solidi (b), 241, 635 (2004).   DOI
9 J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3035 (2008).   DOI
10 Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, Nanotechnology 18, 215604 (2007).   DOI
11 F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, J. Appl. Phys. 90, 824 (2001).   DOI
12 황보수정, 전훈아, 김금채, 이지수, 김도현, 최원봉, 전민현, 한국진공학회지 16, 453 (2007).   과학기술학회마을
13 선정호, 강현철, 한국진공학회지 18, 394 (2009).   과학기술학회마을
14 J.-H. Lee and B.-O. Park, Thin Solid Films 426, 94 (2003).   DOI
15 K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, J. Cryst. Growth 214-215, 312 (2000).   DOI
16 K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films 431-432, 369 (2003).   DOI
17 A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, E. P. Zironi, and J. Rickards, Thin Solid Films 333, 196 (1998).   DOI