Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.5.233

Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell  

Cho, Kuk-Hyun (Graduate school of Energy Science and Technology, Chungnam National University)
Cho, Young Joon (Graduate school of Energy Science and Technology, Chungnam National University)
Chang, Hyo Sik (Graduate school of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.25, no.5, 2015 , pp. 233-237 More about this Journal
Abstract
Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.
Keywords
passivation; atomic layer deposition; aluminum oxide($Al_2O_3$); oxynitride; c-Si solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. C. Roh and H. I. Seo, J. Semicond. Display Technol., 10, (1) March (2011).
2 B Liao, R Stangl, F Ma, T Mueller, F Lin, A G Aberle, C S Bhatia and B Hoex, J. Phys. D: Appl. Phys., 46, 385102 (2013).   DOI
3 B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett., 89, 042112 (2006).   DOI   ScienceOn
4 V. Naumann, M. Otto, R.B. Wehrspohn, M. Werner, C. Hagendorf, Silicon PV: April 03-05, 2012, Leuven, Belgium.
5 Y. Zhao, C. Zhou, X. Zhang, P. Zhang, Y. Dou, W. Wang, X. Cao, B. Wang, Y. Tang and S. Zhou, Nanoscale Res. Lett., 8, 114 (2013).   DOI   ScienceOn
6 S. Bordihn, P. Engelhart, V. Mertens, G. Kesser, D. Kohn, G. Dingemans, M. M. Mandoc, J. W. Muller and W. M. M. Kessels, Silicon PV: 17-20 April 2011, Freiburg, Germany.
7 S. H. Lee, J. Korean Phys. Soc., 39(2), 369 (2001).
8 S. Gatz, J. Muller, T. Dullweber, and R. Brendel, Silicon PV: April 03-05, 2012, Leuven, Belgium.
9 B. Kafle, S. Kuehnhold, W. Beyer, S.Lindekugel, P. Saint-Cast, M. Hofmann and J. Rentsch, 27th EU PVSEC P. 1788-1792.
10 S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl and J. W. Barth, Thin Solid Films, 425, 216 (2003).   DOI   ScienceOn
11 S. Kuhnhold, P. Saint-Cast, B. Kafle, M. Hofmann, F. Colonna and M. Zacharias, J. Appl. Phys., 116, 054507 (2014).   DOI   ScienceOn
12 S. Kuhnhold, B. Kafle, L. Kroely, P. Saint-Cast, M. Hofmann, J. Rentsch and R. Preu, Energy Procedia, 27, 273 (2012).   DOI   ScienceOn
13 A. Roy Chowdhuri, C. G. Takoudis, R. F. Klie and N. D. Browning, Appl. Phys. Lett., 80, 4241 (2002).   DOI   ScienceOn
14 G. Dingemans, W. Beyer, M. C. M. van de Sanden and W. M. M. Kessels, Appl. Phys. Lett., 97, 152106 (2010).   DOI   ScienceOn