• Title/Summary/Keyword: Vapor Deposition Process

Search Result 768, Processing Time 0.029 seconds

Temperature effect on Dry Etching of ZrO2 in Cl2/BCl3/Ar Plasma (기판 온도에 따른 Cl2/BCl3/Ar 플라즈마에서 ZrO2 박막의 건식 식각)

  • Yang, Xue;Ha, Tae-Kyung;Wi, Jae-Hyung;Um, Doo-Seung;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.256-259
    • /
    • 2009
  • The wafer surface temperature is an important parameter in the etching process which influences the reaction probabilities of incident species, the vapor pressure of etch products, and the re-deposition of reaction products on feature surfaces. In this study, we investigated all of the effects of substrate temperature on the etch rate of $ZrO_2$ thin film and selectivity of $ZrO_2$ thin film over $SiO_2$ thin film in inductively coupled plasma as functions of $Cl_2$ addition in $BCl_3$/Ar plasma, RF power and dc-bias voltage based on the substrate temperature in range of $10^{\circ}C$ to $80^{\circ}C$. The elements on the surface were analyzed by x-ray photoelectron spectroscopy (XPS).

SAW Filter Made of ZnO/Nanocrystalline Diamond Thin Films (ZnO/나노결정다이아몬드 적층 박막 SAW 필터)

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.216-219
    • /
    • 2009
  • A surface acoustic wave (SAW) filter structure was fabricated employing $4{\mu}m$ thick nanocrystalline diamond (NCD) and $2.2{\mu}m$ thick ZnO films on Si wafer. The NCD film was deposited in an $Ar/CH_4$ gas mixture by microwave plasma chemical vapor deposition method. The ZnO film was formed over the NCD film in an RF magnetron sputter using ZnO target and $Ar/O_2$ gas. On the top of the two layers, copper film was deposited by the RF sputter and inter digital transducer (IDT) electrode pattern (line/space : $1.5/1.5{\mu}m$) was defined by the photolithography including a lift-off etching process. The fabricated SAW filter exhibited the center frequency of 1.66 GHz and the phase velocity of 9,960 m/s, which demonstrated that a giga Hertz SAW filter can be realized by utilizing the nanocrystalline diamond thin film.

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II)

  • Park, Jong-Pil;Song, Mi-Yeon;Jung, Won-Mok;Lee, Won-Young;Lee, Jin-Ho;Kim, Hang-Geun;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3383-3386
    • /
    • 2012
  • SnS thin films were deposited on glasses through metal organic chemical vapor deposition (MOCVD) method at relatively mild conditions, using bis(3-mercapto-1-propanethiolato) tin(II) precursor without toxic $H_2S$ gas. The MOCVD process was carried out in the temperature range of $300-400^{\circ}C$ and the average grain size in fabricated SnS films was about 500 nm. The optical band gap of the SnS film was about 1.3 eV which is in optimal range for harvesting solar radiation energy. The precursor and SnS films were characterized through infrared spectroscopy, nuclear magnetic resonance spectroscopy, DIP-EI mass spectroscopy, elemental analyses, thermal analysis, X-ray diffraction, and field emission scanning electron microscopic analyses.

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Passivation Properties of Hydrogenated Silicon Nitrides deposited by PECVD

  • Kim, Jae Eun;Lee, Kyung Dong;Kang, Yoonmook;Lee, Hae-Seok;kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.334.2-334.2
    • /
    • 2016
  • Silicon nitride (SiNx:H) films are generally used as passivation layer on solar cell and they are usually made by plasma enhanced chemical vapor deposition (PECVD). In this study, we investigated the properties of silicon nitride (SiNx:H) films made by PECVD. Effects of mixture ratio of process gases with silane (SiH4) and ammonia (NH3) on the passivation qualities of silicon nitride film are evaluated. Passivation properties of SiNx:H are focused by making antireflection properties identical with thickness and refractive index controlled. The absorption coefficient of each film was evaluated by spectrometric ellipsometery and the minority carrier lifetimes were evaluated by quasi-steady-state photo-conductance (QSSPC) measurement. The optical properties were obtained by UV-visible spectrophotometer. The interface properties were measured by capacitance-voltage (C-V) measurement and the film components were identified by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectroscopy detection (RBS) - elastic recoil detection (ERD).

  • PDF

Improvement of PDMS graphene transfer method through surface modification of target substrate (폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구)

  • Han, Jae-Hyung;Choi, Mu-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.232-239
    • /
    • 2015
  • In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.

Numerical Analysis on the Beat and Mass Transport in Horizontal MOCVD Reactor for the Growth of GaN Epitaxy (수평형 MOCVD에 의한 GaN 에피층 성장시 반응로내의 열 및 물질전달에 관한 수치해석 연구)

  • 신창용;윤정모;이철로;백병준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.341-349
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD(metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactant to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. From the numerical calculation, the concentration of reactants could be qualitatively predicted by the Nusselt number(heat transfer) and the optimum mass flow rate, wall tilt angle and inlet condition were considered.

  • PDF

Inspection of Ceramic Coatings Using Nanoindentation and Frequency Domain Photoacoustic Microscopy

  • Steen, T.L.;Basu, S.N.;Sarin, V.K.;Murray, T.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.390-402
    • /
    • 2006
  • The elastic properties and thickness of mullite environmental barrier coatings grown through chemical vapor deposition (CVD) on silicon carbide substrates were measured using frequency domain photoacoustic microscopy. In this technique, extremely narrow bandwidth surface acoustic waves are generated with an amplitude modulated laser source. A photorefractive crystal based interferometer is used to detect the resulting surface displacement. The complex displacement field is mapped as a function of source-to-receiver distance in order to extract the wavelength of the surface acoustic wave at a given excitation frequency, and the phase velocity is determined. The coatings tested exhibited spatial variations in thickness and mechanical properties. The measured surface wave dispersion curves were used to extract an effective value for the elastic modulus and the coating thickness. Nanoindentation was used to validate the measurements of the effective elastic modulus. The average elastic modulus measured through the coating thickness using nanoindentation is compared to the effective modulus found using the photoacoustic system. Optical microscopy is used to validate the thickness measurements. The results indicate that the photoacoustic microscopy technique can be used to estimate the effective elastic properties in coatings exhibiting spatial inhomogeneities, potentially providing valuable feedback for the optimization of the CVD growth process.

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates (고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석)

  • Yang, Dae-Gyu;Kim, Hyoung-Do;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.