• Title/Summary/Keyword: Vanadium oxide ($VO_{x}$)

Search Result 24, Processing Time 0.024 seconds

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Structural and Electrical Properties of Vanadium Oxide Thin Films Annealed in Vacuum (진공 어닐링한 바나듐 산화악의 구조적, 전기적 특성)

  • Choi Bok-Gil;Choi Chang-Kyu;Kwon Kwang-Ho;Kim Sung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Thin films of vanadium oxide(VO/sub x/) were deposited by r.f. magnetron sputtering from V₂O/sub 5/ target with oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% and in situ annealed in vacuum at 400℃ for 1h and 4h. Crystal structure, chemical composition, molecular structure, optical and electrical properties of films were characterized through XRD, XPS, RBS, FTIR, optical absorption and electrical conductivity measurements. The films as-deposited are amorphous, but 0%O₂ films annealed for time longer than 4h and 8% O₂ films annealed for time longer than 1h are polycrystalline. As the oxygen partial pressure is increased the films become more stoichiometric V₂O/sub 5/. When annealed at 400℃, the as-deposited films are reduced to a lower oxide. The optical transmission of the films annealed in vacuum decreases considerably than the as-deposited films and the optical absorption of all the films increases rapidly at wavelength shorter than about 550nm. Electrical conductivity and thermal activation energy are increased with increasing the annealing time and with decreasing the oxygen partial pressure.

Reaction of NO on Vanadium Oxide Surfaces: Observation of the NO Dimer Formation

  • Jeong, Hyun-Suck;Kim, Chang-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.413-416
    • /
    • 2007
  • The adsorption and surface reactions of NO on a VO/V(110) surface have been investigated using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure, and temperature programmed desorption (TPD) technique. NO is molecularly adsorbed on VO/V(110) at 80 K. As the surface coverage of NO increases, the NO dimer is formed on the surface at 80 K. Both NO and (NO)2 are adsorbed on the surface with the N-O bond perpendicular to the surface. (NO)2 decomposes at ~100 K and the reaction product is desorbed as N2O. Decomposition of NO takes place when the surface temperature is higher than 273 K.

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

MIT characteristic of VO2 thin film deposited by ALD using vanadium oxytriisopropoxide precursor and H2O reactant

  • Shin, Changhee;Lee, Namgue;Choi, Hyeongsu;Park, Hyunwoo;Jung, Chanwon;Song, Seokhwi;Yuk, Hyunwoo;Kim, Youngjoon;Kim, Jong-Woo;Kim, Keunsik;Choi, Youngtae;Seo, Hyungtak;Jeon, Hyeongtag
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.5
    • /
    • pp.484-489
    • /
    • 2019
  • VO2 is an attractive candidate as a transition metal oxide switching material as a selection device for reduction of sneak-path current. We demonstrate deposition of nanoscale VO2 thin films via thermal atomic layer deposition (ALD) with H2O reactant. Using this method, we demonstrate VO2 thin films with high-quality characteristics, including crystallinity, reproducibility using X-ray diffraction, and X-ray photoelectron spectroscopy measurement. We also present a method that can increase uniformity and thin film quality by splitting the pulse cycle into two using scanning electron microscope measurement. We demonstrate an ON / OFF ratio of about 40, which is caused by metal insulator transition (MIT) of VO2 thin film. ALD-deposited VO2 films with high film uniformity can be applied to next-generation nonvolatile memory devices with high density due to their metal-insulator transition characteristic with high current density, fast switching speed, and high ON / OFF ratio.

Effects of Oxygen Partial Pressure on the Structural Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 구조적 특성에 미치는 산소 분압의 효과)

  • 최복길;최용남;최창규;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.435-438
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\sub$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\sub$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition and bonding properties of films sputter-deposited under different oxygen gas pressures are characterized through XRO, XPS, RBS and FTIR measurements. All the films prepared below 8% O$_2$ are amorphous, and those prepared without oxygen are gray indicating the presence of V$_2$O$\sub$$_4$/ phase in the films. V$_2$O$\sub$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\sub$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms. located on the V-O plane of V$_2$O$\sub$5/ layer participate more readily in the oxidation process.

  • PDF

Effect of Oxygen Partial Pressure on the Structural, Optical and Electrical Properties of Sputter-deposited Vanadium Oxide Thin Films (스퍼터링으로 증착된 바나듐 산화막의 구조적, 광학적, 전기적 특성에 미치는 산소 분압의 효과)

  • 최복길;최창규;권광호;김성진;이규대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.1008-1015
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\_$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition, bonding, optical and electrical properties of films sputter-deposited under different oxygen gas pressures are characterized through XPS, AES, RBS, FTIR, optical absorption and electrical conductivity measurements. V$_2$O$\_$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\_$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. With increasing oxygen gas pressure indirect and direct optical band gaps are increased, but thermal activation energies are decreased.

  • PDF

Effects of Vacuum Annealing on the Electrical Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 전기적 특성에 미치는 진공 어닐링의 효과)

  • Hwang, In-Soo;Lee, Seung-Chul;Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Nam-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.435-438
    • /
    • 2003
  • The effects of oxygen partial pressure and vacuum annealing on the electrical properties of sputtered vanadium oxide($VO_x$) thin films were investigated. The thin films were prepared by r.f. magnetron sputtering from $V_2O_5$ target in a gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Electrical properties of films sputter-deposited under different oxygen gas pressures and in situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through electrical conductivity measurements. I-V characteristics were distinguished between linear and nonlinear region. In the low field region the conduction is due to Schottky emission, while at high fields it changes to Fowler-Nordheim tunneling type conduction. The conductivity measurements have shown an Arrhenius dependence of the conductivity on the temperature.

  • PDF

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance (CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가)

  • Park, Yong-Jin;Kim, Jae-Hyun;Lee, Kyubock;Lee, Seung-Mo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.135-141
    • /
    • 2020
  • Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.