DOI QR코드

DOI QR Code

MIT characteristic of VO2 thin film deposited by ALD using vanadium oxytriisopropoxide precursor and H2O reactant

  • Shin, Changhee (Division of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Lee, Namgue (Division of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Choi, Hyeongsu (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Hyunwoo (Division of Materials Science and Engineering, Hanyang University) ;
  • Jung, Chanwon (Division of Materials Science and Engineering, Hanyang University) ;
  • Song, Seokhwi (Division of Materials Science and Engineering, Hanyang University) ;
  • Yuk, Hyunwoo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Youngjoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Jong-Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Keunsik (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Youngtae (Division of Materials Science and Engineering, Hanyang University) ;
  • Seo, Hyungtak (Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University) ;
  • Jeon, Hyeongtag (Division of Nanoscale Semiconductor Engineering, Hanyang University)
  • Received : 2019.06.07
  • Accepted : 2019.08.14
  • Published : 2019.10.01

Abstract

VO2 is an attractive candidate as a transition metal oxide switching material as a selection device for reduction of sneak-path current. We demonstrate deposition of nanoscale VO2 thin films via thermal atomic layer deposition (ALD) with H2O reactant. Using this method, we demonstrate VO2 thin films with high-quality characteristics, including crystallinity, reproducibility using X-ray diffraction, and X-ray photoelectron spectroscopy measurement. We also present a method that can increase uniformity and thin film quality by splitting the pulse cycle into two using scanning electron microscope measurement. We demonstrate an ON / OFF ratio of about 40, which is caused by metal insulator transition (MIT) of VO2 thin film. ALD-deposited VO2 films with high film uniformity can be applied to next-generation nonvolatile memory devices with high density due to their metal-insulator transition characteristic with high current density, fast switching speed, and high ON / OFF ratio.

Keywords

References

  1. A. Sawa, Mater. Today 11[6] (2008) 28-36. https://doi.org/10.1016/S1369-7021(08)70119-6
  2. R. Waser, R. Dittamann, G. Staikov, and K. Szot, Adv. Mater. 21 (2009) 2632-2663. https://doi.org/10.1002/adma.200900375
  3. H. Jeon, J. Park, W. Jang, H. Kim, C. Kang, H. Song, H. Seo, and H. Jeon, Appl. Phys. Lett. 104 (2014) 151603. https://doi.org/10.1063/1.4871692
  4. H. Jeon, J. Park, W. Jang, H. Kim, S. Ahn, K.-J. Jeon, H. Seo, and H. Jeon, Carbon 75 (2014) 209-216. https://doi.org/10.1016/j.carbon.2014.03.055
  5. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett. 32[11] (2011) 1579-1581. https://doi.org/10.1109/LED.2011.2163697
  6. M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C.B. Lee, D.H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, and B.H. Park, Adv. Mater. 19[22] (2007) 3919-3923. https://doi.org/10.1002/adma.200700251
  7. M.-J. Lee, S. Seo, D.-C. Kim, S.-E. Ahn, D.H. Seo, I.-K. Yoo, I.-G. Baek, D.-S. Kim, I.-S. Byun, S.-H. Kim, I.-R. Hwang, J.-S. Kim, S.-H. Jeon, and B.H. Park, Adv. Mater. 19[1] (2007) 73-76. https://doi.org/10.1002/adma.200601025
  8. W.Y. Park, G. H. Kim, J.Y. Seok, K.M. Kim, S.J. Song, M.H. Lee, and C.S. Hwang, Nanotechnology 21 (2010) 195201. https://doi.org/10.1088/0957-4484/21/19/195201
  9. J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K.P. Biju, S. Kim, S. Park, and H. Hwang, Published in 2010 International Electron Devices Meeting, January 2010, DOI: 10.1109/IEDM.2010.5703393.
  10. A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, and C.W. Chu, Appl. Phys. Lett. 83 (2003) 957. https://doi.org/10.1063/1.1590741
  11. Y. Jo, K. Jung, J. Kim, H. Woo, J. Han, H. Kim, J. Hong, J.-K. Lee, and H. Im, Sci. Rep. 4 (2014) 7354.
  12. L. Alekseeva, T. Nabatame, T. Chikyow, and A. Petrov, Jpn. J. Appl. Phys. 55 (2016) 08PB02. https://doi.org/10.7567/JJAP.55.08PB02
  13. K.-R. Pyon, K.-S. Han, and B.-H. Lee, J. Ceram. Process. Res. 12[3] (2011) 279-288. https://doi.org/10.36410/JCPR.2011.12.3.279
  14. H. Yang, S. Seo. M. Abboudi, and P.H. Holloway, J. Ceram. Process. Res. 8[4] (2007) 256-260 https://doi.org/10.36410/JCPR.2007.8.4.256
  15. Y. Wang, L. Yang, X. Wang, Y. Wang, and G. Han, J. Ceram. Process. Res. 17[7] (2016) 690-693 https://doi.org/10.36410/JCPR.2016.17.7.690
  16. S.-J. Kim, T. Masaki, S.-H. Choi, and D.-H. Yoon, J. Ceram. Process. Res. 17[4] (2016) 338-343 https://doi.org/10.36410/JCPR.2016.17.4.338
  17. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J.E. Hoffman, Appl. Phys. Lett. 96 (2010) 213106. https://doi.org/10.1063/1.3435466
  18. S. Zhang, J.Y. Chou, and L.J. Lauhon, Nano Lett. 9[12] (2009) 4257-4532.
  19. J.I. Sohn, H.J. Joo, D. Ahn, H.H. Lee, A.E. Porter, K. Kim, D.J. Kang, and M.E. Welland, Nano Lett. 9[10] (2009) 3392-3397. https://doi.org/10.1021/nl900841k
  20. J.D. Budai, J. Hong, M.E. Manley, E.D. Specht, C.W. Li, J.Z. Tischler, D.L. Abernathy, A.H. Said, B.M. Leu, L.A. Boatner, R.J. McQueeney, and O. Delaire, Nature 515 (2014) 535-539. https://doi.org/10.1038/nature13865
  21. N. Shukal, A.V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D.G. Schlom, S.K. Gupta, R. Engel-Herbert, and S. Datta, Nat. Commun. 6 (2015) 7812. https://doi.org/10.1038/ncomms8812
  22. B. Wang, J. Lai, S. Chen, E. Zhao, H. Hu, and Q. Lu, Opt. Eng. 51[7] (2012) 074003. https://doi.org/10.1117/1.OE.51.7.074003
  23. F.-W. Yang, K.-H. Chen, C.-M. Cheng, and F.-Y. Su, Ceram. Int. 39 (2013) S729-S732 https://doi.org/10.1016/j.ceramint.2012.10.170
  24. H. Zhou, J. Li, Y. Xin, G. Sun, S. Bao, and P. Jin, Ceram. Int. 42 (2016) 7655-7663 https://doi.org/10.1016/j.ceramint.2016.01.178
  25. K. Kosuge, J. Phys. Chem. Solids 28[8] (1967) 1613-1621. https://doi.org/10.1016/0022-3697(67)90293-4
  26. M.B. Sahana, M.S. Dharmaprakash, and S.A. Shivashankar, J. Mater. Chem. 12 (2002) 333-338. https://doi.org/10.1039/b106563g
  27. S.J. Yun, J.W. Lim, J.-Su. Noh, B.-G. Chae, and H.-T. Kim, Jpn. J. Appl. Phys. 47 (2008) 3067. https://doi.org/10.1143/JJAP.47.3067
  28. S.-P. Nam, S.-G. Lee, and Y.-H. Lee, J. Ceram. Process. Res. 10[2] (2009) 224-226. https://doi.org/10.36410/JCPR.2009.10.2.224
  29. J. Nag and R.F. Haglund Jr, J. Phys.: Condens. Matter 20 (2008) 264016. https://doi.org/10.1088/0953-8984/20/26/264016
  30. S. Shin, G. Ham, H. Jeon, J. Park, W. Jang, and H. Jeon, Kor. J. Mater. Res. 23 (2013) 405-422. https://doi.org/10.3740/MRSK.2013.23.8.405
  31. H.-S. Yun, S.-W. Jung, S.-H. Jeong, K.-H. Kim, C.-A. Choi, and B.-G. Yu, Journal of the Korean Institute of Electrical and Electronic Material Engineers 21 (2008) 156-161. https://doi.org/10.4313/JKEM.2008.21.2.156
  32. J. Musschoot, D. Deduytsche, H. Poelman, J. Haemers, R. L. Van Meirhaeghe, S. Van den Berghe, and C. Detavernier, J. Electrochem. Soc. 156[7] (2009) 122-126.
  33. M. Demeter, M. Neumann, and W. Reichelt, Surf. Sci. 454-456 (2000) 41-44. https://doi.org/10.1016/S0039-6028(00)00111-4
  34. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R.D. Gryse, J. Electron Spectrosc. Relat. Phenom. 135[2-3] (2004) 167-175. https://doi.org/10.1016/j.elspec.2004.03.004