Browse > Article
http://dx.doi.org/10.9713/kcer.2020.58.1.135

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance  

Park, Yong-Jin (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Jae-Hyun (Department of Nanomechanics, Korea Institute of Machinery & Materials (KIMM))
Lee, Kyubock (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Lee, Seung-Mo (Department of Nanomechanics, Korea Institute of Machinery & Materials (KIMM))
Publication Information
Korean Chemical Engineering Research / v.58, no.1, 2020 , pp. 135-141 More about this Journal
Abstract
Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.
Keywords
Supercapacitor; Pseudocapacitor; Graphene; Vanadium oxide; Atomic layer deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tung, V. C., Allen, M. J., Ynag, Y. and Kaner, R. B., "High-Throughput Solution Processing of Large-Scale Graphene," Nat. Nanotechnol., 4, 25-29(2009).   DOI
2 Becerill, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z. and Chen, Y., "Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors," ACS Nano, 2(3), 463-470(2008).   DOI
3 Wang, X., Zhi, L. and Müllen, K., "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., 8(1), 323-327(2008).   DOI
4 Matuyama, E., "Pyrolysis of Graphitic Acid," J. Phys. Chem., 58(3), 215-219(1954).   DOI
5 Furst, A., Berlo, R. C. and Hooton, S., "Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions)," Chem. Rev., 65(1), 51-68(1965).   DOI
6 Si, Y. and Samulski, E. T., "Synthesis of Water Soluble Graphene," Nano Lett., 8(6), 1679-1682(2008).   DOI
7 Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. and Yao, J., "Facile Synthesis and Characterization of Graphene Nanosheets," J. Phys. Chem. C, 112(22), 8192-8195(2008).   DOI
8 Kang, K.-Y., Choi, M. G., Lee, Y.-G. and Kim, K. M., "Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-Ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$," Korean Chem. Eng. Res., 49(5), 541-547(2011).   DOI
9 Kim, D.-H., Song, K.-C., Shim, K.-H. and Kim, J.-H., "Preparation of NiO Electrodes for Supercapacitor by the Sol-Gel Process," Korean Chem. Eng. Res., 41(2), 238-242(2003).
10 George, S. M., "Atomic Layer Deposition: An Overview," Chem. Rev., 110(1), 111-131(2010).   DOI
11 Lee, H. Y. and Goodenough, J. B., "Ideal Supercapacitor Behavior of Amorphous $V_2O_5{\cdot}nH_2O $ in Potassium Chloride (KCl) Aqueous Solution," J. Solid State Chem., 148(1), 81-84(1999).   DOI
12 Lee, S.-M., Park, Y.-J. and Kim, J.-H., "Laser Reduction of Zn-Infiltrated Multilayered Graphene Oxide as Electrode Materials for Supercapacitors," ACS Appl. Nano Mater., 2(6), 3711-3717(2019).   DOI
13 Bhattacharjya, D., Kim, C.-H., Kim, J.-H., You, I.-K., In, J. B. and Lee, S.-M., "Fast and Controllable Reduction of Graphene Oxide by Low-Cost $CO_2$ Laser for Supercapacitor Application," Appl. Surf. Sci., 462, 353-361(2018).   DOI
14 Tran, T. X., Choi, H., Che, C. H., Sul, J. H., Kim, I. G., Lee, S.-M., Kim, J.-H. and In, J. B., "Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications," ACS Appl. Mater. Interfaces, 10(46), 39777-39784 (2018).   DOI
15 Johra, F. T., Lee, J.-W. and Jung, W.-G., "Facile and Safe Graphene Preparation on Solution Based Platform," J. Ind. Eng. Chem., 20(5), 2883-2887(2014).   DOI
16 Wu, N., She, X., Yang, D., Wu, X., Su, F. and Chen, Y., "Synthesis of Network Reduced Graphene Oxide in Polystyrene Matrix by a Two-Step Reduction Method for Superior Conductivity of the Composite," J. Mater. Chem., 22(33), 17254-17261(2012).   DOI
17 Mattelaer, F., Geryl, K., Rampelberg, G., Dendooven, J. and Detavernier, C., "Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries," ACS Appl. Mater. Interfaces, 9, 13121-13131(2017).   DOI
18 Uchaker, E., Zheng, Y. Z., Li, S., Candelaria, S. L., Hu, S. and Cao, G. Z., "Better than Crystalline: Amorphous Vanadium Oxide for Sodium-Ion Batteries," J. Mater. Chem. A, 2(43), 18208-18214(2014).   DOI
19 Wang, W., Jiang, B., Hua, L., Lin, Z., Hou, J. and Jiao, S., "Single Crystalline $VO_2$ Nanosheets: A Cathode Material for Sodium- Ion Batteries with High Rate Cycling Performance," J. Power Sources, 250, 181-187(2014).   DOI
20 Wang, G., Zhang, L. and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chem. Soc. Rev., 41, 797-828(2012).   DOI
21 Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publisher, New York(1999).
22 Zhu, K., Zhang, C., Guo, S., Yu, H., Liao, K., Chen, G., Wei, Y. and Zhou, H., "Sponge-Like Cathode Material Self-Assembled from Two-Dimensional $V_2O_5$ Nanosheets for Sodium-Ion Batteries," ChemElectroChem, 2(11), 1660-1664(2015).   DOI
23 Sun, W., Zheng, R. and Chen, X., "Symmetric Redox Supercapacitor Based on Micro-Fabrication with Three-Dimensional Polypyrrole Electrodes," J. Power Sources, 195(20), 7120-7125(2010).   DOI
24 Cui, L., Li, J. and Zhang, X.-G., "Preparation and Properties of $Co_3O_4$ Nanorods as Supercapacitor Material," J. Appl. Electrochem., 39, 1871-1876(2009).   DOI
25 Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York(2000).
26 Sun, X., Xie, M., Travis, J. J., Wang, G., Sun, H., Lian, J. and George, S. M., "Pseudocapacitance of Amorphous $TiO_2$ Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition," J. Phys. Chem. C, 117, 22497-22508(2013).   DOI
27 Zang, X., Shen, C., Kao, E., Warren, R., Zhang, R., Teh, K. S., Zhong, J., Wei, M., Li, B., Chu, Y., Sanghadasa, M., Schwartzberg, A. and Lin, L., "Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors," Adv. Mater., 30, 1704754(2017).   DOI
28 Sassin, M. B., Mansour, A. N., Pettigrew, K. A., Rolison, D. R. and Long, J. W., "Electroless Deposition of Conformal Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage," ACS Nano, 4, 4505-4514(2010).   DOI
29 Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y. and Sun, Z., "Electrochemical Behaviors of Graphene-ZnO and Graphene-$SnO_2$ Composite Films for Supercapacitors," Electrochim. Acta, 55, 4170-4173(2010).   DOI
30 Vinoth, V., Wu, J. J., Asiri, A. M., Lana-Villarreal, T., Bonete, P. and Anandan, S., "$SnO_2$-Decorated Multiwalled Carbon Nanotubes and Vulcan Carbon through a Sonochemical Approach for Supercapacitor Applications," Ultrason. Sonochem., 29, 205-212 (2016).   DOI
31 Simon, P. and Gogotsi, Y., "Materials for Electrochemical Capacitors," Nat. Mater., 7, 845-854(2008).   DOI
32 Lukatskaya, M. R., Dunn, B. and Gogotsi, Y., "Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage," Nat. Commun., 7, 12647(2016).   DOI
33 Nunez, C. G., Manjakkal, L. and Dahiya, R., "Energy Autonomous Electronic Skin," Npj Flexible Electron., 3, 1(2019).   DOI
34 Miller, J. R. and Simon, P., "Electrochemical Capacitors for Energy Management," Science, 321(5889), 651-652(2008).   DOI
35 Boukhalfa, S., Evanoff, K. and Yushin, G., "Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes," Energy Environ. Sci., 5, 6872-6879 (2012).   DOI
36 Perera, S. D., Patel, B., Nijem, N., Roodenko, K., Seitz, O., Ferraris, J. P., Chabal, Y. J. and Balkus, K. J., "Vanadium Oxide Nanowire -Carbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors," Adv. Energy Mater., 1(5), 936-945(2011).   DOI
37 Zhang, Y.-M., Bao, S.-X., Liu, T., Chen, T.-J. and Huang, J., "The Technology of Extracting Vanadium from Stone Coal in China: History, Current Status and Future Prospects," Hydrometallurgy, 109(1-2), 116-124(2011).   DOI
38 Li, M., Sun, G., Yin, P., Ruan, C. and Ai, K., "Controlling the Formation of Rodlike $V_2O_5$ Nanocrystals on Reduced Graphene Oxide for High-Performance Supercapacitors," ACS Appl. Mater. Interfaces, 5(21), 11462-11470(2013).   DOI
39 Lee, H. S., Park, J. W., Lee, Y. M., Ryou, M. H., Kim, K. M. and Ko, J. M., "Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes," Korean Chem. Eng. Res., 54(3), 293-298(2016).   DOI
40 Kotz, R. and Carlen, M., "Principles and Applications of Electrochemical Capacitors," Electrochim. Acta, 45(15-16), 2483-2498 (2000).   DOI
41 Yang, P. and Mai, W., "Flexible Solid-State Electrochemical Supercapacitors," Nano Energy, 8, 274-290(2014).   DOI
42 Ko, J. M. and Kim, K. M., "Supercapacitive Properties of RuO2 and Ru-Co Mixed Oxide Deposited on Single-Walled Carbon Nanotube," Korean Chem. Eng. Res., 47(1), 11-16(2009).
43 Tagsin, P., Klangtakai, P., Harnchana, V., Amornkitbamrung, V., Pimanpang, S. and Kumnorkaew, P., "Enhanced Specific Capacitance of an Electrophoretic Deposited $MnO_2$-Carbon Nanotube Supercapacitor," J. Korean Phys. Soc., 71(12), 997-1005(2017).   DOI
44 Wang, N., Zhang, Y., Hu, T., Zhao, Y. and Meng, C., "Facile Hydrothermal Synthesis of Ultrahigh-Aspect-Ratio $V_2O_5$ Nanowires for High-Performance Supercapacitors," Curr. Appl Phys., 15(4), 493-498(2015).   DOI
45 Huang, X. W., Xie, Z. W., He, X. Q., Sun, H. Z., Tong, C. and Xie, D. M., "Electric Double Layer Capacitors Using Activated Carbon Prepared from Pyrolytic Treatment of Sugar as Their Electrodes," Synth. Met., 135-136, 235-236(2003).   DOI
46 El-Kady, M. F., Ihns, M., Li, M., Hwang, J. Y., Mousavi, M. F., Chaney, L., Lech, A. T. and Kaner, R. B., "Engineering Three-Dimensional Hybrid Supercapacitors and Microsupercapacitors for High-Performance Integrated Energy Storage," Proc. Natl. Acad. Sci. U.S.A., 112(14), 4233-4238(2015).   DOI
47 Augustyn. V., Simon. P. and Dunn, B., "Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage," Energy Environ. Sci., 7, 1597-1614(2014).   DOI