• Title/Summary/Keyword: Vacuum characteristics

Search Result 2,160, Processing Time 0.029 seconds

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Processing of Functional Mackerel Fillet and Quality Changes during Storage (기능성 고등어 Fillet제조 및 저장 중 품질 변화)

  • 신석우;장미순;권미애;서호준
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • In order to endow mackerel fillet with antioxidant effect, functionality and remove fishy smell, chitosan, oligosaccaride, extracts of green tea, dill weed and ginger was used as soaking solution additives. Quality characteristics of soaked mackerel fillet(SMF) was investigated during storage temperature and time after vacuum packing with polyvinyl chloride film. From the results of VBN measurement, initial spoilage was showed within 2 or 3 weeks in SMF soaked with brine including extracts of green tea, herb and ginger at 5$^{\circ}C$. In case of adding chitosan and oligosaccarides to the solution mentioned above, initial spoilage was found from 4 to 7 weeks, oxidation was reduced remarkably and SMF stored at -20$^{\circ}C$ maintained the freshness during 80 days. Viable cell counts were reached to 108 for 3 weeks storage at 5 and 0$^{\circ}C$. But no change of viable cell counts was founded at -20$^{\circ}C$. The shelf-lifes of SMF according to 5, 0 and -20$^{\circ}C$storage temperatures were 2 to 3, 4 to 7 weeks and about 3 months, respectively.

Quality Characteristics of Canned Boiled Oyster and Canned Boiled Oyster in Bamboo Salt in Various Sterilization Conditions (살균조건에 따른 굴 보일드통조림 및 죽염 굴 보일드통조림의 식품 품질 특성)

  • Kong, Cheong-Sik;Je, Hae-Soo;Jung, Jae-Hun;Kwon, Soon-Jae;Lee, Jae-Dong;Yoon, Moon-Joo;Choi, Jong-Duck;Kim, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1231-1244
    • /
    • 2014
  • Oysters, especially are excellent source of several mineral including iron, zinc and selenium, which are often low in the mordern diet. They are also an excellent source of glycogen, vitamin B12 and considered the healthiest when eaten raw on the half shell in good tasted season from November to March. This study was investigated for the purpose of obtaining basic data which can be applied to processing of two kinds of canned boiled oyster (canned boiled oyster, canned boiled oyster in bamboo salt). Shucked oyster meat was cooked in steam (15min) after washing with water, filled 90g into can (301-3), added with salt solution and then precooked for 10 min. at $100^{\circ}C$. Canned boiled oyster was added 1.5% salt solution 60mL. Canned boiled oyster in bamboo salt was added 0.5% salt solution 30mL and 0.7% bamboo salt solution 30mL. The cans were seamed using a vacuum seamer, and then sterilized for various Fo values (Fo 8~12 min.) in a steam system retort at $116^{\circ}C$, $118^{\circ}C$. Viable bacterial count, proximate composition, pH, salinity, yield, VBN, amino-N, TBA, mineral, color value, free amino acid, hardness and sensory evaluation of two kinds of canned boiled oyster produced at various sterilization condition (Fo 8~12 min.) were measured after divide to meat and juice. The results showed that canned boiled oyster in bamboo salt sterilized at Fo 8 min. was the most desirable because this condition is the most economical and tasty.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

Comparison of physicochemical characteristics of horse fat, lard, and beef-tallow (감압추출마유(horse fat) 및 시판 돈지와 우지의 이화학적 특성 비교)

  • Park, Youn Hyung;Cho, Man Jae;Kim, Hyun Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Horse fat was vacuum-extracted from fatty tissues of Jeju and Halla horse meat and their physicochemical properties were compared to those of commercial lard and beef-tallow. For color, ${\Delta}E$ was found to be decreased when crystallized. Although acid values of horse fat were higher than those of lard and beef-tallow, p-anisidine and totox values were lower. The iodine value of beef-tallow was the lowest (44.61), and those of horse fat and lard were similar (57.53-57.74). Only horse fat contained ${\alpha}-tocopherol$. The contents of ${\gamma}-tocopherol$ in Jeju and Halla horse fat, lard, and beef-tallow were 7.08, 4.57, 2.13, and 1.91 mg/kg, respectively. Palmitoleic acid ($C_{16:1}$) was found in horse fat. Melting and crystallization curves of horse fat displayed two endothermic and exothermic peaks which were differentiated from lard and beef-tallow. These results indicated that horse fat demonstrates different physicochemical properties compared to lard and beef-tallow, when applied to various types of lipid products.

Evaluation of Indoor Mold Exposure Level in dwelling Using DNA-Based Mold Assessment Method (DNA 기반 곰팡이 평가기법을 활용한 주택의 실내 곰팡이 노출수준 평가)

  • Hwang, Eun-Seol;Seo, Sung Chul;Lee, Ju-Yeong;Ryu, Jung-min;Kwon, Myung-Hee;Chung, Hyen-Mi;Cho, Yong-Min;Lee, Jung-Sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.382-392
    • /
    • 2018
  • Objective: Allergic diseases such as asthma due to fungal exposure in houses have increased, and proper management is urgent. Mold can grow in the air, floor, walls, and other areas according to environmental conditions, and there are many limitations to the conventional methodology for examining fungal exposure. For this reason, the degree of fungal contamination is being evaluated by ERMI (Environmental Relative Moldiness Index), a quantitative analysis method proposed by the EPA. In this study, we compared ERMI values between water-damaged dwellings and non-damaged ones to evaluate the effectiveness of Korean ERMI values. We also explored the association of ERMI values with the level of airborne mold and characteristics of dwellings. Methods: Floor dust was collected after installing a Dustream collector on the suction port of a vacuum cleaner. The collected samples were filtered to remove only 5 mg of dust, and DNA was extracted using the FastDNA SPIN KIT protocol. Results: The ERMI values were found to be 19.6 (-6.9-58.8) for flooded houses, 7.5 (-29.2-48.3) for leaks/condensation, and 0.8 (-29.2-37.9) for non-damaged dwellings. The airborne concentration of mold for flooded, leakage or condensed, and non-damaged houses were $684CFU/m^3$, $566CFU/m^3$, and $378CFU/m^3$, respectively. The correlation between ERMI values and the levels of airborne mold was low (R = 0.038), but a weakly significant association of the ERMI values with the concentration of particulate matter ($PM_{10}$) was observed as well(R=0.231,P<0.05). Conclusions: Our findings show that the reference value using ERMI can be used to distinguish water-damaged and non-damaged dwellings. It is believed that ERMI values could be a promising tool for assessing long-term fungal exposure in dwellings.

Changes in Total Plate Counts and Quality of Pig Small Intestine by Different Washing and Packaging Methods

  • Kang, Geunho;Seong, Pil-Nam;Ba, Hoa Van;Moon, Sungsil;Cho, Soohyun;Park, Beom-Young;Kang, Sun-Moon;Ham, Hyoung-Joo;Kim, Dayae;Park, Kyoungmi
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1253-1260
    • /
    • 2018
  • Pig small intestine not only is used as food but also for sausage casings production in many countries worldwide. However, it is well recognized that the small intestine is important source of spoilage and pathogenic bacteria. The present study aimed at investigating the effects of different washing and packaging methods on the changes of microbial levels and physicochemical characteristics of pig small intestine. After collecting and trimming off of visible fats, the pig small intestine samples were treated with; (i) different packaging methods: aerobic packaging (AP), skin packaging (SP), and vacuum packaging (VP); and (ii) washing with different concentrations of acetic acid. The treated samples were then stored at $4^{\circ}C$ for 1, 4, 7, and 10 d. At 1-d storage, higher pH value was found in the AP-treated samples, however, after 7 to 10 days the samples treated with SP had higher values compared to the ones treated with AP and VP (p<0.05). Thiobarbituric acid reactive substances values were higher in the AP-treated samples than those of the SP- and VP- treated samples at 7-d storage (p<0.05). At $10^{th}$ d, total plate counts (TPC) were higher in the control than in the acetic acid-washed samples (p<0.05). Additionally, the TPC was lower in the SP- and VP-treated samples than the AP-treated samples at 7-d storage (p<0.05). These obtained results suggest that the applications of washing with acetic acid solution and/or SP and VP methods could be an effective way to extend the shelf-life of pig small intestine during cold distribution.

Effects on microbial diversity of fermentation temperature (10℃ and 20℃), long-term storage at 5℃, and subsequent warming of corn silage

  • Zhou, Yiqin;Drouin, Pascal;Lafreniere, Carole
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1528-1539
    • /
    • 2019
  • Objective: To evaluate the effects on microbial diversity and biochemical parameters of gradually increasing temperatures, from $5^{\circ}C$ to $25^{\circ}C$ on corn silage which was previously fermented at ambient or low temperature. Methods: Whole-plant corn silage was fermented in vacuum bag mini-silos at either $10^{\circ}C$ or $20^{\circ}C$ for two months and stored at $5^{\circ}C$ for two months. The mini-silos were then subjected to additional incubation from $5^{\circ}C$ to $25^{\circ}C$ in $5^{\circ}C$ increments. Bacterial and fungal diversity was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiling and biochemical analysis from mini-silos collected at each temperature. Results: A temperature of $10^{\circ}C$ during fermentation restricted silage fermentation compared to fermentation temperature of $20^{\circ}C$. As storage temperature increased from $5^{\circ}C$ to $25^{\circ}C$, little changes occurred in silages fermented at $20^{\circ}C$, in terms of most biochemical parameters as well as bacterial and fungal populations. However, a high number of enterobacteria and yeasts (4 to $5\;log_{10}$ colony forming unit/g fresh materials) were detected at $15^{\circ}C$ and above. PCR-DGGE profile showed that Candida humilis predominated the fungi flora. For silage fermented at $10^{\circ}C$, no significant changes were observed in most silage characteristics when temperature was increased from $5^{\circ}C$ to $20^{\circ}C$. However, above $20^{\circ}C$, silage fermentation resumed as observed from the significantly increased number of lactic acid bacteria colonies, acetic acid content, and the rapid decline in pH and water-soluble carbohydrates concentration. DGGE results showed that Lactobacillus buchneri started to dominate the bacterial flora as temperature increased from $20^{\circ}C$ to $25^{\circ}C$. Conclusion: Temperature during fermentation as well as temperature during storage modulates microorganism population development and fermentation patterns. Silage fermented at $20^{\circ}C$ indicated that these silages should have lower aerobic stability at opening because of better survival of yeasts and enterobacteria.

Facilitated Oxygen Transport through a Polyethersulfone Membrane Containing Cobalt Tetraphenylporphyrin-Benzylimidazole (Cobalt Tetraphenylporphyrin-benzylimidazole을 포함한 산소 촉진수송막)

  • Lee, Seung Hwan;Park, Se Hyung;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.424-431
    • /
    • 2018
  • The gas separation performance of a mixed membrane structure based on a mixture of polyethersulfone (PES) and cobalt tetraphenylporphyrin-benzylimidazole (CoTpp-BIm) as an oxygen carrier was investigated. The CoTpp-BIm mixed PES membrane had an asymmetric structure with a mixture of finger structure and sponge-like structure, and the upper surface was dense. The gas separation performance test was carried out using $94%\;N_2$ gas and $6%\;O_2$ mixed gas. Oxygen and nitrogen permeability coefficients were measured at ${\Delta}P$ ranging from 15 to 228 cmHg and the permeate side of the PES membrane was maintained at vacuum level. The oxygen permeability coefficient of CoTpp-BIm mixed PES membranes increased as supplied pressure was decreased. When the supply pressure was 15 cmHg, the gas permeability ($P_{O_2}$) was 6676 Barrer, the $O_2/N_2$ selectivity (${\alpha}$) was 6.1, and the promoting factor (F) was 2.39. Based on these results, it was confirmed that the addition of CoTpp-BIm to the PES film improved the oxygen separation characteristics.

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.