DOI QR코드

DOI QR Code

Facilitated Oxygen Transport through a Polyethersulfone Membrane Containing Cobalt Tetraphenylporphyrin-Benzylimidazole

Cobalt Tetraphenylporphyrin-benzylimidazole을 포함한 산소 촉진수송막

  • Lee, Seung Hwan (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Se Hyung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 이승환 (동국대학교 화공생물공학과) ;
  • 박세형 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2018.12.03
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

The gas separation performance of a mixed membrane structure based on a mixture of polyethersulfone (PES) and cobalt tetraphenylporphyrin-benzylimidazole (CoTpp-BIm) as an oxygen carrier was investigated. The CoTpp-BIm mixed PES membrane had an asymmetric structure with a mixture of finger structure and sponge-like structure, and the upper surface was dense. The gas separation performance test was carried out using $94%\;N_2$ gas and $6%\;O_2$ mixed gas. Oxygen and nitrogen permeability coefficients were measured at ${\Delta}P$ ranging from 15 to 228 cmHg and the permeate side of the PES membrane was maintained at vacuum level. The oxygen permeability coefficient of CoTpp-BIm mixed PES membranes increased as supplied pressure was decreased. When the supply pressure was 15 cmHg, the gas permeability ($P_{O_2}$) was 6676 Barrer, the $O_2/N_2$ selectivity (${\alpha}$) was 6.1, and the promoting factor (F) was 2.39. Based on these results, it was confirmed that the addition of CoTpp-BIm to the PES film improved the oxygen separation characteristics.

Cobalt tetraphenylporphyrin-benzylimidazole (CoTpp-BIm)을 산소 운반체로 이용하여 polyethersulfone (PES)와의 혼합물을 기반으로 하는 혼합 구조의 평판형 분리막의 기체 분리 성능을 조사하였다. CoTpp-BIm이 혼합된 PES막은 손가락 구조와 스폰지형 구조가 혼합된 비대칭 구조를 가졌고, 상부표면은 치밀한 형태를 보였다. 기체분리 성능 실험은 94%의 $N_2$ 기체에 6%의 $O_2$가 혼합된 기체를 사용하여 평가하였다. 산소 및 질소 투과율은 ${\Delta}P$가 15~228 cmHg 범위에서 실험하였고, PES막의 투과면은 진공수준으로 유지되었다. CoTpp-BIm이 혼합된 PES막의 산소 투과율은 공급 압력이 감소함에 따라 증가하였다. 공급 압력이 15 cmHg일 때 산소 투과율($P_{O_2}$)는 6676 Barrer이었고, $O_2/N_2$ 선택도(${\alpha}$)는 6.1, 촉진인자(F)는 2.39까지 증가하였다. 이를 바탕으로 PES막에 CoTpp-BIm을 첨가하면 산소분리 특성이 향상되는 것을 확인하였다.

Keywords

References

  1. International energy agency (IEA), "$CO_2$ capture and storage: A key carbon abatement option", (2008).
  2. T. S. Chung, D. Patino-Echeverri, and T. L. Johnson, "Expert assessments of retrofitting coal-fired power plants with carbon dioxide capture technologies", Energ. Policy., 39, 5609 (2011). https://doi.org/10.1016/j.enpol.2011.04.038
  3. J. N. Knudsen, J. N. Jensen, P.-J. Vilhelmsen, and O. Biede, "Experience with $CO_2$ capture from coal flue gas in pilot-scale: Testing of different amine solvents", Enrgy. Proced., 1, 783 (2009). https://doi.org/10.1016/j.egypro.2009.01.104
  4. R. J. Notz, I. TOnnies, N. McCann, G. Scheffknecht, and H. Hasse, "$CO_2$ capture for fossil fuel-fired power plants", Chem. Eng. Technol., 34, 163 (2011). https://doi.org/10.1002/ceat.201000491
  5. S. G. George and T. R. Gary, "Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in $CO_2$ capture processes", Ind. Eng. Chem. Res., 45, 2513 (2006). https://doi.org/10.1021/ie0490031
  6. H. J. M. Bouwmeester and A. J. Burggraaf, "Dense ceramic membranes for oxygen separation in: A.J. Burggraff, L. Cot(Eds.)", Fundamentals of Inorganic Membrane Science and Technology, 4, 435 (1996).
  7. M. Shoji, K. Oyaizu, and H. Nishide, "Facilitate oxygen transport through a Nafion membrane containing cobalt porphyrin as a fixed oxygen carrier", Polymer., 49, 5659 (2008). https://doi.org/10.1016/j.polymer.2008.10.016
  8. A. F. Ismail, R. A. Rahim, and W. A. W. A. Rahman, "Characterization of polyethersulfone/ Matrimid${(R)}$ 5218 miscible blend mixed matrix membranes for $O_2/N_2$ gas separation", Sep. Purif. Technol., 63, 200 (2008). https://doi.org/10.1016/j.seppur.2008.05.007
  9. M. B. Peter, J. M. Kadhum, E. T. Carin, S. G. Bader, J. R. Kevin, B. M. Neil, and F. Detlev, "Gas separation membranes from polymers of intrinsic microporosity", J. Membr. Sci., 251, 263 (2005). https://doi.org/10.1016/j.memsci.2005.01.009
  10. W. B. Richard, C. R. Ian, and K. L. Harold, "Liquid membranes for the production of oxygen- enriched air: I. Introduction and passive liquid membranes", J. Membr. Sci., 31, 15 (1987). https://doi.org/10.1016/S0376-7388(00)81339-3
  11. M. J. Bruce, W. B. Richard, L. M. Stephen, L. S. Kelly, C. R. Ian, E. T. Mark, and K. L. Harold, "Liquid membranes for the production of oxygen- enriched air: II. Facilitated-transport membranes", J. Membr. Sci., 31, 31 (1987). https://doi.org/10.1016/S0376-7388(00)81340-X
  12. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  13. R. J. Notz, I. Tonnies, N. McCann, G. Scheffknecht, and H. Hasse, "$CO_2$ capture for fossil fuel-fired power plant", Chem. Eng. Technol., 34, 163 (2011). https://doi.org/10.1002/ceat.201000491
  14. M. A. Goldberg, S. P. Dunning, and H. F. Bunn, "Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein", Science, 242, 1412 (1988). https://doi.org/10.1126/science.2849206
  15. H. Nishide, H. Kawakami, S. Toda, E. Tsuchida, and Y. Kamiya, "Selective sorption and facilitated transport of oxygen in porphinatocobalt-coordinated polymer membranes", Macromolecules, 24, 5851 (1991). https://doi.org/10.1021/ma00021a020
  16. H. Shinohara, T. Arai, and H. Nishide, "Oxygen-binding to simple cobaltporphyrins combined with polyvinylmidazole," Macromol. Sy., 186, 135 (2002). https://doi.org/10.1002/1521-3900(200208)186:1<135::AID-MASY135>3.0.CO;2-R
  17. C. Barth, M. C. Goncalves, A. T. N. Pires, J. Roeder, and B. A. Wolf, "Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance", J. Membr. Sci., 169, 287 (2000). https://doi.org/10.1016/S0376-7388(99)00344-0
  18. D. J. Lin, C. L. Chang, T. C. Chen, and L. P. Cheng, "On the structure of porous poly (vinylidene fluoride) membrane prepared by phase inversion from water-NMP-PVDF system", J. Sci. Eng., 5, 95 (2002).
  19. L. Broens, F. W. Altena, and C. A. Smolders, "Asymmetric membrane structures as a result of phase separation phenomena", Desalination., 32, 33 (1980). https://doi.org/10.1016/S0011-9164(00)86004-X
  20. B. Shentu and H. Nishide, "Facilitated oxygen transport membranes of picket-fence cobaltporphyrin complexed with various polymer matrixes", Ind. Eng. Chem. Res., 42, 5954 (2003). https://doi.org/10.1021/ie020770e
  21. M. Teraguchi and T. Masuda, "Poly (diphenylacetylene) membranes with high gas permeability and remarkable chiral memory", Macromolecules., 35, 1149 (2002). https://doi.org/10.1021/ma011537f
  22. T. Suzuki, H. Yasuda, H. Nishide, X. S. Chen, and E. Tsuchida, "Electrochemical measurement of facilitated oxygen transport through a polymer membrane containing cobaltporphyrin as a fixed carrier", J. Membr. Sci., 112, 155 (1996). https://doi.org/10.1016/0376-7388(95)00291-X
  23. H. Nishide, M. Ohyanagi, O. Okada, and E. Tsuchida, "Spectroscopic Study of oxygen sorption and diffusion in a membrane containing a cobalt porphyrin complex", Polym. J., 19, 839 (1987). https://doi.org/10.1295/polymj.19.839
  24. H. Shinohara, H. Shibata, D. Wöhrle, and H. Nishide, "Reversible oxygen binding to the polymeric cobalt tetraazaporphyrin complex and oxygen- facilitated transport through its Membrane", Macromol. Rapid. Comm., 26, 467 (2005). https://doi.org/10.1002/marc.200400591
  25. N. Preethi, H. Shinohara, and H. Nishide, "Reversible oxygen-binding and facilitated oxygen transport in membranes of polyvinylimidazole complexed with cobalt-phthalocyanine", React. Funct. Polym., 66, 851 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.11.013
  26. Y. He, J. Yang, H. Li, and P. Huang, "The effect of oxygen carriers on gas transport through polysiloxane and ethylcellulose membranes", Polymer, 39, 3393 (1998). https://doi.org/10.1016/S0032-3861(97)10284-1
  27. H. X. Rao, F. N. Liu, and Z. Y. Zhang, "Oxygen-enriching properties of silicone rubber crosslinked membrane containing cobalt", J. Membr. Sci., 296, 15 (2007). https://doi.org/10.1016/j.memsci.2007.03.003
  28. M. S. Delaney, D. Reddy, and R. A. Wessling, "Oxygen/nitrogen transport in glassy polymers with oxygen-binding pendent groups", J. Membr. Sci., 49, 15 (1990). https://doi.org/10.1016/S0376-7388(00)80775-9
  29. J. M. Yang and G. H. Hsiue, "Oxygen permeation in SBS-g-VP membrane and effect of facilitated oxygen carrier", J. Appl. Polym. Sci., 41, 1141 (1990). https://doi.org/10.1002/app.1990.070410523
  30. G. H. Hsiue and J. M. Yang, "Epoxidized styrene- butadiene-styrene block copolymer membrane complexes with cobalt schiff bases for oxygen permeation", Macromolecules, 24, 4010 (1991). https://doi.org/10.1021/ma00014a007
  31. B. Shentu, H. Shinohara, and H. Nishide, "High oxygen permeation and persistent oxygen-carrying in a poly (vinylimidazole-co-fluoroalkyl methacrylate)- cobaltporphyrin membrane", Polym. J., 33, 807 (2001). https://doi.org/10.1295/polymj.33.807