• 제목/요약/키워드: Vacancy defect

검색결과 91건 처리시간 0.024초

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on Ni-Doped $\alpha-Fe_2O_3$

  • Kim, Keu-Hong;Jun, Jong-Ho;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권1호
    • /
    • pp.41-44
    • /
    • 1984
  • The oxidation of carbon monoxide has been investigated on Ni-doped ${\alpha}-Fe_2O_3$ catalyst at 300 to $450^{\circ}$. The oxidation rates have been correlated with 1.5-order kinetics; first with respect to CO and 1/2 with respect to $O_2$. Carbon monoxide is adsorbed on lattice oxygen of Ni-doped ${\alpha}-Fe_2O_3$, while oxygen appears to be adsorbed on oxygen vacancy formed by Ni-doping. The conductivities show that adsorption of CO on O-lattice produces conduction electron and adsorption of $O_2$ on O-vacancy withdraws the conduction electron from vacancy. The adsorption process of CO on O-lattice is rate-determining step and dominant defect of Ni-doped ${\alpha}-Fe_2O_3$ is suggested from the agreement between kinetic and conductivity data.

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

Transient analysis of point defect dynamics in czochralski-grown silicon crystals

  • Wang, Jong-Hoe;Oh, Hyun-Jung;Park, Bong-Mo;Lee, Hong-Woo;Yoo, Hak-Do
    • 한국결정성장학회지
    • /
    • 제11권6호
    • /
    • pp.259-263
    • /
    • 2001
  • The continuum model of transient point defect dynamics to predict the concentrations of interstitial and vacancy is established by estimating expressions for the thermophysical properties of intrinsic point defects. And the point defect distribution in a Czochralski-grown 200 mm silicon crystal and the location of oxidation-induced stacking fault ring(OiSF-ring) created during the cooling of crystals are calculated by using the numerical analysis. The purpose of this paper is to show that his approach lead to predictions that are consistent with experimental results. Predicted point defect distributions by transient point defect dynamic analysis are in good qualitative agreement with experimental data under widely and abruptly varying crystal pull rates when correlated with the position of the OiSF-ring .

  • PDF

Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu

  • Lee, Chong Yong
    • Applied Science and Convergence Technology
    • /
    • 제25권5호
    • /
    • pp.85-87
    • /
    • 2016
  • Coincidence Doppler broadening and positron lifetime methods in positron annihilation spectroscopy has been used to analyze defect structures in metal, semiconductor and polycrystal, respectively. The S parameter and the lifetime (${\tau}$) value show that the defects were strongly related with vacancies. A positive relationship existed between the scanning electron microscope (SEM) images and the positron annihilation spectroscopy (PAS). According to the SEM images and PAS results, measurements of the defects with PAS indicate that it was more affected by the defect than the purity.

마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 - (Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching -)

  • 김규태;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Effects of Nitrogen Defect on Magnetism of Cu-doped InN: First-principles Calculations

  • Kang, Byung-Sub;Chae, Kwang-Pyo;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.81-85
    • /
    • 2013
  • We investigate the electronic and magnetic properties in Cu-doped InN with the N vacancy ($V_N$) from first principles calculations. There is the long-range ferromagnetic order between two Cu atoms, attributed to the hole-mediated double exchange through the strong p-d interaction between the Cu atom and neighboring N atom. The system of $V_N$ defect in Cu-doped InN has the lowest formation energy. Due to the hybridization between the Cu-3d and $V_N$ states, the spin-polarization on the Cu atoms in the InN lattice is reduced by $V_N$ defect. So, it shows a weak ferromagnetic behavior.

Effect of Zinc Vacancy on Carrier Concentrations of Nonstoichiometric ZnO

  • Kim, Eun-Dong;Bahng, Wook
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.17-21
    • /
    • 2001
  • We proposed that concentrations of cartier electron as well as ionized donor defects in nonstoichiometric ZnO are proportional to $P^{-1/2}_{O_2}$, whenever they ionizes singly or doubly, by employing the Fermi-Dirac (FD) statistics for ionization of the native thermal defects $Zn_i$ and $V_o$. The effect of acceptor defect, zinc vacancy $V_{Zn}$made by the Frenkel and Schottky disorder reactions, on carrier concentrations was discussed. By application of the FD statistics law to their ionization while the formation of defects is assumed governed by the mass-action law, the calculation results indicate; 1. ZnO shows n-type conductivity with $N_D>$N_A$ and majority concentration of $n{\propto}\;P^{-1/2}_{O_2}$ in a range of $P_{O_2}$, lower than a critical value. 2. As the concentration of acceptor $V_{Zn}$ increases proportional to $P^{1/2}_{O_{2}}$, ZnO made at extremely high $P_{O_{2}}$, can have p-type conductivity with majority concentration of p ${\propto}\;P^{-1/2}_{O_{2}}$. One may not, however, obtain p-type ZnO if the pressure for $N_{D}<$N_{A}$ is too high.

  • PDF

분자동력학적 방법에 의한 저 메너지 As 이온 주입에 따른 Si 기판의 결함 형성 거동에 대한 컴퓨터 모사 실험 (Computer Simulaton of Defect Formation Behaviors of Crystal-Silicon on the Low Energy Arsenic Implantation by Molecular Dynamics)

  • 정동석;박병도
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.259-264
    • /
    • 2000
  • In this study, we quantitatively measure the ion ranges of arsenic with energies ranging from 10 KeV to 100 KeV, implanted at $3^{\circ}$, $9^{\circ}$ $15^{\circ}$ the (100) plane, and the damage created during ion implantation. To obtain detailed information of ion range and damage distributions in low energy region where elastic collisions dominate the slowing down process, molecular dynamics computer simulation was performed and compared to the existing results. The effects of implant energy and degree on damage generation are present. The number of vacancy were calculated from the deposited energy using Kinchin-Pease equation. In the energy range 10 keV-100 keV, simulations show that the number of Frenckel pairs produced by As-ion bimbardment is 9 and incident angle dependence of the vacancy was the same but defects were distributed at different depth.

  • PDF

A Study point defect for thermal annealed ZnSe/GaAs epilayer

  • 홍광준;이상열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.120-123
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_1^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The $I_1^d$ peak was dominantly observed in the ZnSe/GaAs:Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs:Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a $(V_{Se}-V_{Zn})-V_{Zn}$.

  • PDF