Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.5.85

Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu  

Lee, Chong Yong (Department of Physics, Hannam University)
Publication Information
Applied Science and Convergence Technology / v.25, no.5, 2016 , pp. 85-87 More about this Journal
Abstract
Coincidence Doppler broadening and positron lifetime methods in positron annihilation spectroscopy has been used to analyze defect structures in metal, semiconductor and polycrystal, respectively. The S parameter and the lifetime (${\tau}$) value show that the defects were strongly related with vacancies. A positive relationship existed between the scanning electron microscope (SEM) images and the positron annihilation spectroscopy (PAS). According to the SEM images and PAS results, measurements of the defects with PAS indicate that it was more affected by the defect than the purity.
Keywords
Positron annihilation spectroscopy; Defects; BaSrFBr:Eu; Ti; Si;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Vyrynen, J. Risnen, P. Tikkanen, I. Kassamakov, and E. Tuominen, J. Appl. Phys. 106, 024908 (2009).   DOI
2 S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993).   DOI
3 M. Grtzel, Nature 414, 338 (2001).   DOI
4 M. mills and S. Le Hunte, J. Photobiol A 108, 1 (1997).   DOI
5 K. Koschnick, Th. Hangleiter, J. M. Spaeth, and R. S. Eachus, J. Phys. Condens. Matter 4, 3001 (1992).   DOI
6 Y. Amemiya and J. Miyahara, Nature (London) 336, 89 (1988).   DOI
7 M. J. Puska and R. M. Nieminem, Rev. Mod. Phys. 66, 841 (1994).   DOI
8 Kwon Hee Lee, Suk Hwan Bae, and Chong Yong Lee, J. Kor. Vacuum Soc., 22, 250 (2013).   DOI
9 A. Sachdeva, S. V. Chavan, A. Goswami, A. K. Tyagi, and P. K. Pujari, J. Solid State Chem. 178, 2062 (2005).   DOI
10 C. Lim and W. F. Huang, SolidState, Commun. 87, 771 (1993).   DOI
11 P. Sen, Nuclear, Instr. Meth. Phys. Res. A 314, 366 (1992).   DOI
12 R. W. Siegel, Scripta Metallugica 14, 15 (1980).   DOI
13 Th. Lagouri, Sp. Dedoussis, M. Chardalas, and A. Liolios, Phys. Lett. A 229, 259 (1997).   DOI
14 K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, M. F. Robbins, E. Bonderup, and J. Golovchenko, Phys. Rev. Lett. 38, 241 (1977).   DOI
15 K. G. Lynn, J. E. Dickman, W. L. Brown, M. F. Robbins, and E. Bonderup, Phys. Rev B 20, 3566 (1979).   DOI
16 Chong Yong Lee, J. Kor. Vacuum Soc., 22, 341 (2013).   DOI
17 P. Asoka-Kumar, M. Alatalo, V. J. Ghosh, A. C. Kruseman, B. Nielsen, and K. G. Lynn, Phys. Rev Lett. 77, 2097 (1996).   DOI
18 K. Saarinen, J. Nissil, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautojrvi, and C. Corbel, Phys. Rev Lett. 82, 1883 (1999).   DOI
19 R. S. Brusa, W. Deng, Karwasz, and A. Zecca, Nucl. Instr. And Meth. B 194, 519 (2002).   DOI
20 A. Sachdeva, S. V. Chavan, A. Goswami, A. K. Tyagi, and P. K. Pujari, J. Solid State Chem. 178, 2062 (2005).   DOI
21 T. K. Gupta and W. G. Carlson, J. Mater. Sci., 20, 3487 (1987).
22 H. OHkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani, Mater. Sci. Eng. A350, 95 (2003).   DOI
23 A. J. Hill, I. M. Katz, P. L. Jones, and R. P. Pagano, Physica C 176, 64 (1991).   DOI