Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.2.081

Effects of Nitrogen Defect on Magnetism of Cu-doped InN: First-principles Calculations  

Kang, Byung-Sub (Department of Nano Science and Mechanical Engineering, Konkuk University)
Chae, Kwang-Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University)
Lee, Haeng-Ki (Department of Radiotechnology, Suseong College)
Publication Information
Abstract
We investigate the electronic and magnetic properties in Cu-doped InN with the N vacancy ($V_N$) from first principles calculations. There is the long-range ferromagnetic order between two Cu atoms, attributed to the hole-mediated double exchange through the strong p-d interaction between the Cu atom and neighboring N atom. The system of $V_N$ defect in Cu-doped InN has the lowest formation energy. Due to the hybridization between the Cu-3d and $V_N$ states, the spin-polarization on the Cu atoms in the InN lattice is reduced by $V_N$ defect. So, it shows a weak ferromagnetic behavior.
Keywords
Cu-doped InN; first-principles; nitrogen defect; ferromagnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yanlu Li, Weiliu Fan, Honggang Sun, Xiufeng Cheng, Pan Li, Xian Zhao, and Minhua Jiang, J. Solid State Chem. 183, 2662 (2010).   DOI   ScienceOn
2 S. Yu Savrasov, Phys. Rev. B 54, 16470 (1996).   DOI   ScienceOn
3 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
4 J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975).   DOI
5 Claudia Bungaro, Krzysztof Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720 (2000).   DOI   ScienceOn
6 Agostino Zoroddu, Fabio Bernardini, and Paolo Ruggerone, Phys. Rev. B64, 045208-1 (2001).
7 L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
8 R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006).   DOI   ScienceOn
9 ByungSub Kang, HaengKi Lee, KyeongSup Kim, and HeeJae Kang, Phys. Scr. 79, 025701 (2009).   DOI   ScienceOn
10 T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).   DOI   ScienceOn
11 C. Stampfl, C. G. Van de Walle, Phys. Rev. B 59, 5521 (1999).   DOI   ScienceOn
12 Masahiko Hashimoto, Yi-Kai Zhou, Masahito Kanamura, and Hajime Asahi, Solid State Commun. 122, 37 (2002).   DOI   ScienceOn
13 P. P. Chen, H. Makino, J. J. Kim, and T. Yao, J. Cryst. Growth 251, 331 (2003).   DOI   ScienceOn
14 T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).   DOI   ScienceOn
15 P. P. Chen, H. Makino, and T. Yao, J. Cryst. Growth 269, 66 (2004).   DOI   ScienceOn
16 V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi, B Basic Res. 229, R1 (2002).   DOI
17 J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).   DOI   ScienceOn
18 T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).   DOI
19 K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).   DOI   ScienceOn
20 S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).   DOI   ScienceOn
21 Q. Guo, Q. Kato, M. Fujisawa, and A. Yoshida, Solid State Commun. 83, 721 (1992).   DOI   ScienceOn
22 M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006).   DOI   ScienceOn