DOI QR코드

DOI QR Code

Effects of Nitrogen Defect on Magnetism of Cu-doped InN: First-principles Calculations

  • Kang, Byung-Sub (Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Chae, Kwang-Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Lee, Haeng-Ki (Department of Radiotechnology, Suseong College)
  • Received : 2013.01.02
  • Accepted : 2013.05.01
  • Published : 2013.06.30

Abstract

We investigate the electronic and magnetic properties in Cu-doped InN with the N vacancy ($V_N$) from first principles calculations. There is the long-range ferromagnetic order between two Cu atoms, attributed to the hole-mediated double exchange through the strong p-d interaction between the Cu atom and neighboring N atom. The system of $V_N$ defect in Cu-doped InN has the lowest formation energy. Due to the hybridization between the Cu-3d and $V_N$ states, the spin-polarization on the Cu atoms in the InN lattice is reduced by $V_N$ defect. So, it shows a weak ferromagnetic behavior.

Keywords

References

  1. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001). https://doi.org/10.1103/PhysRevB.63.195205
  2. C. Stampfl, C. G. Van de Walle, Phys. Rev. B 59, 5521 (1999). https://doi.org/10.1103/PhysRevB.59.5521
  3. Masahiko Hashimoto, Yi-Kai Zhou, Masahito Kanamura, and Hajime Asahi, Solid State Commun. 122, 37 (2002). https://doi.org/10.1016/S0038-1098(02)00073-X
  4. P. P. Chen, H. Makino, J. J. Kim, and T. Yao, J. Cryst. Growth 251, 331 (2003). https://doi.org/10.1016/S0022-0248(02)02204-2
  5. P. P. Chen, H. Makino, and T. Yao, J. Cryst. Growth 269, 66 (2004). https://doi.org/10.1016/j.jcrysgro.2004.05.073
  6. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi, B Basic Res. 229, R1 (2002). https://doi.org/10.1002/1521-3951(200202)229:3<R1::AID-PSSB99991>3.0.CO;2-O
  7. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002). https://doi.org/10.1063/1.1482786
  8. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002). https://doi.org/10.1063/1.1499753
  9. K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003). https://doi.org/10.1063/1.1592309
  10. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004). https://doi.org/10.1063/1.1738183
  11. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986). https://doi.org/10.1063/1.336906
  12. Q. Guo, Q. Kato, M. Fujisawa, and A. Yoshida, Solid State Commun. 83, 721 (1992). https://doi.org/10.1016/0038-1098(92)90151-X
  13. M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett. 96, 196402 (2006). https://doi.org/10.1103/PhysRevLett.96.196402
  14. Yanlu Li, Weiliu Fan, Honggang Sun, Xiufeng Cheng, Pan Li, Xian Zhao, and Minhua Jiang, J. Solid State Chem. 183, 2662 (2010). https://doi.org/10.1016/j.jssc.2010.08.038
  15. S. Yu Savrasov, Phys. Rev. B 54, 16470 (1996). https://doi.org/10.1103/PhysRevB.54.16470
  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  17. J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975). https://doi.org/10.1103/PhysRevB.12.1257
  18. Claudia Bungaro, Krzysztof Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720 (2000). https://doi.org/10.1103/PhysRevB.61.6720
  19. Agostino Zoroddu, Fabio Bernardini, and Paolo Ruggerone, Phys. Rev. B64, 045208-1 (2001).
  20. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
  21. R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett. 89, 062505 (2006). https://doi.org/10.1063/1.2335773
  22. ByungSub Kang, HaengKi Lee, KyeongSup Kim, and HeeJae Kang, Phys. Scr. 79, 025701 (2009). https://doi.org/10.1088/0031-8949/79/02/025701