• Title/Summary/Keyword: VaR Estimate

Search Result 21, Processing Time 0.017 seconds

Vector at Risk and alternative Value at Risk (Vector at Risk와 대안적인 VaR)

  • Honga, C.S.;Han, S.J.;Lee, G.P.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.689-697
    • /
    • 2016
  • The most useful method for financial market risk management may be Value at Risk (VaR) which estimates the maximum loss amount statistically. The VaR is used as a risk measure for one industry. Many real cases estimate VaRs for many industries or nationwide industries; consequently, it is necessary to estimate the VaR for multivariate distributions when a specific portfolio is established. In this paper, the multivariate quantile vector is proposed to estimate VaR for multivariate distribution, and the Vector at Risk for multivariate space is defined based on the quantile vector. When a weight vector for a specific portfolio is given, one point among Vector at Risk could be found as the best VaR which is called as an alternative VaR. The alternative VaR proposed in this work is compared with the VaR of Morgan with bivariate and trivariate examples; in addition, some properties of the alternative VaR are also explored.

VaR Estimation of Multivariate Distribution Using Copula Functions (Copula 함수를 이용한 이변량분포의 VaR 추정)

  • Hong, Chong-Sun;Lee, Jae-Hyung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.523-533
    • /
    • 2011
  • Most nancial preference methods for market risk management are to estimate VaR. In many real cases, it happens to obtain the VaRs of the univariate as well as multivariate distributions based on multivariate data. Copula functions are used to explore the dependence of non-normal random variables and generate the corresponding multivariate distribution functions in this work. We estimate Archimedian Copula functions including Clayton Copula, Gumbel Copula, Frank Copula that are tted to the multivariate earning rate distribution, and then obtain their VaRs. With these Copula functions, we estimate the VaRs of both a certain integrated industry and individual industries. The parameters of three kinds of Copula functions are estimated for an illustrated stock data of two Korean industries to obtain the VaR of the bivariate distribution and those of the corresponding univariate distributions. These VaRs are compared with those obtained from other methods to discuss the accuracy of the estimations.

Estimation of VaR in Stock Return Using Change Point

  • Lee, Seung-S.;Jo, Ju-H.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.289-300
    • /
    • 2007
  • The stock return is changed by factors of inside and outside or is changed by factor of market system. But most studies have not considered the changes of stock return distribution when estimate the VaR. Such study may lead us to wrong conclusion. In this paper we calculate the VaR of price-to-earnings ratios by the distribution that have considered the change point and used transformation to satisfy normal distribution.

  • PDF

Estimation of VaR Using Extreme Losses, and Back-Testing: Case Study (극단 손실값들을 이용한 VaR의 추정과 사후검정: 사례분석)

  • Seo, Sung-Hyo;Kim, Sung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.219-234
    • /
    • 2010
  • In index investing according to KOSPI, we estimate Value at Risk(VaR) from the extreme losses of the daily returns which are obtained from KOSPI. To this end, we apply Block Maxima(BM) model which is one of the useful models in the extreme value theory. We also estimate the extremal index to consider the dependency in the occurrence of extreme losses. From the back-testing based on the failure rate method, we can see that the model is adaptable for the VaR estimation. We also compare this model with the GARCH model which is commonly used for the VaR estimation. Back-testing says that there is no meaningful difference between the two models if we assume that the conditional returns follow the t-distribution. However, the estimated VaR based on GARCH model is sensitive to the extreme losses occurred near the epoch of estimation, while that on BM model is not. Thus, estimating the VaR based on GARCH model is preferred for the short-term prediction. However, for the long-term prediction, BM model is better.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

VaR Estimation via Transformed GARCH Models (변환된 GARCH 모형을 활용한 VaR 추정)

  • Park, Ju-Yeon;Yeo, In-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.891-901
    • /
    • 2009
  • In this paper, we investigate the approach to estimate VaR under the transformed GARCH model. The time series are transformed to approximate to the underlying distribution of error terms and then the parameters and the one-sided prediction interval are estimated with the transformed data. The back-transformation is applied to compute the VaR in the original data scale. The analyses on the asset returns of KOSPI and KOSDAQ are presented to verify the accuracy of the coverage probabilities of the proposed VaR.

Estimating the Credit Value-at-Risk of Korean Property and Casuality Insurers

  • Hong, Yeon-Woong;Suh, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1027-1036
    • /
    • 2008
  • Value at Risk(VaR) is a fundamental tool for managing market risks. It measures the worst loss to be expected of a portfolio over a given time horizon under normal market conditions at a given confidence level. Calculation of VaR frequently involves estimating the volatility of return processes and quantiles of standardized returns. In this paper, we introduced and applied the CreditMetrics model to estimate the credit VaR of Korean Property and Casuality insurers.

  • PDF

Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models (장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정)

  • Oh, Jeongjun;Kim, Sunggon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.163-185
    • /
    • 2013
  • In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.

Performance Analysis of Volatility Models for Estimating Portfolio Value at Risk (포트폴리오 VaR 측정을 위한 변동성 모형의 성과분석)

  • Yeo, Sung Chil;Li, Zhaojing
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.541-559
    • /
    • 2015
  • VaR is now widely used as an important tool to evaluate and manage financial risks. In particular, it is important to select an appropriate volatility model for the rate of return of financial assets. In this study, both univariate and multivariate models are considered to evaluate VaR of the portfolio composed of KOSPI, Hang-Seng, Nikkei indexes, and their performances are compared through back testing techniques. Overall, multivariate models are shown to be more appropriate than univariate models to estimate the portfolio VaR, in particular DCC and ADCC models are shown to be more superior than others.

Comparison of semiparametric methods to estimate VaR and ES (조건부 Value-at-Risk와 Expected Shortfall 추정을 위한 준모수적 방법들의 비교 연구)

  • Kim, Minjo;Lee, Sangyeol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.171-180
    • /
    • 2016
  • Basel committee suggests using Value-at-Risk (VaR) and expected shortfall (ES) as a measurement for market risk. Various estimation methods of VaR and ES have been studied in the literature. This paper compares semi-parametric methods, such as conditional autoregressive value at risk (CAViaR) and conditional autoregressive expectile (CARE) methods, and a Gaussian quasi-maximum likelihood estimator (QMLE)-based method through back-testing methods. We use unconditional coverage (UC) and conditional coverage (CC) tests for VaR, and a bootstrap test for ES to check the adequacy. A real data analysis is conducted for S&P 500 index and Hyundai Motor Co. stock price index data sets.