• Title/Summary/Keyword: VTOL (Vertical Take-off and Landing)

Search Result 49, Processing Time 0.024 seconds

Preliminary Conceptual Design of a Multicopter Type eVTOL using Reverse Engineering Techniques for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 역설계 기법을 사용한 멀티콥터형 eVTOL의 기본 개념설계)

  • Choi, Won-Seok;Yi, Dong-Kyu;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • As a means of solving traffic congestion in the downtown of large city, the interest in urban air mobility (UAM) using electric vertical take-off landing personal aerial vehicle (eVTOL PAV) is increasing. eVTOL configurations that will be used for UAM are classified by lift-and-cruise, tilt rotors, tilt-wings, tilted-ducted fans, multicopters, depending on propulsion types. This study tries to perform preliminary conceptual design for a given mission profile using reverse engineering techniques by taking the multicopter type Airbus's CityAirbus as a basic model. Wetted area, lift to drag ratio, drag coefficients were calculated using the OpenVSP which is an aerodynamic analysis software. The power required for each mission section of CityAirbus were calculated, and the corresponding battery and motor were selected. Also, total weight was predicted by estimating component weights of eVTOL.

Study of Longitudinal Stability of eVTOL UAM with Tilt Rotor and Tandem Wing (Tilt Rotor와 Tandem Wing을 적용한 eVTOL UAM의 세로안정성 연구)

  • Joo Chan-Young;Kim Ha-Min;Kim Min-Jae;Min Kyoung-Soon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.941-946
    • /
    • 2023
  • To improve the lift, cruise speed, and range of eVTOL aircraft, which are being considered as future transportation vehicles, this paper introduces the concepts of Tilt Rotor and Tandem Wing to the aircraft. We developed an aircraft and conducted flight experiments to obtain flight videos and flight logs. The results of the analysis of the flight videos and flight logs showed that the aircraft's moment was excessively forward and the attitude was not recovered. To address this problem, we modified the wing incidence angles and surface areas in XFLR5 to obtain the optimal pitching moment coefficients to ensure vertical stability. We then analyzed the redesigned aircraft, developed using CATIA, through XFLR5. The results of this study provide valuable insights, suggesting that the incorporation of Tilt Rotor and Tandem Wing designs can contribute to achieving stable pitching moment coefficients. This innovative approach offers a promising avenue to significantly enhance vertical stability in UAM vehicles, paving the way for future advancements in the field.

PSO-SAPARB Algorithm applied to a VTOL Aircraft Longitudinal Dynamics Controller Design and a Study on the KASS (수직이착륙기 종축 제어기 설계에 적용된 입자군집 최적화 알고리즘과 KASS 시스템에 대한 고찰)

  • Lee, ByungSeok;Choi, Jong Yeoun;Heo, Moon-Beom;Nam, Gi-Wook;Lee, Joon Hwa
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.12-19
    • /
    • 2016
  • In the case of hard problems to find solutions or complx combination problems, there are various optimization algorithms that are used to solve the problem. Among these optimization algorithms, the representative of the optimization algorithm created by imitating the behavior patterns of the organism is the PSO (Particle Swarm Optimization) algorithm. Since the PSO algorithm is easily implemented, and has superior performance, the PSO algorithm has been used in many fields, and has been applied. In particular, PSO-SAPARB (PSO with Swarm Arrangement, Parameter Adjustment and Reflective Boundary) algorithm is an advanced PSO algorithm created to complement the shortcomings of PSO algorithm. In this paper, this PSO-SAPARB algorithm was applied to the longitudinal controller design of a VTOL (Vertical Take-Off and Landing) aircraft that has the advantages of fixed-wing aircraft and rotorcraft among drones which has attracted attention in the field of UAVs. Also, through the introduction and performance of the Korean SBAS (Satellite Based Augmentation System) named KASS (Korea Augmentation Satellite System) which is being developed currently, this paper deals with the availability of algorithm such as the PSO-SAPARB.

Numerical Estimation of Heat flux on the Deck Exposed to the High Temperature Impinging Jet of VTOL Vehicle (수직 이착륙기의 고온 고속 배기열에 의한 함정 갑판의 열유속 계산을 위한 수치모델)

  • Jang, Hosang;Hwang, Seyun;Choi, Wonjun;Lee, Jang Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.74-85
    • /
    • 2018
  • This study has analyzed the convective heat transfer on the deck exposed to the high-temperature impingement exhausting from a VTOL vehicle. The heat flow of the impingement on the deck is modeled by the convection heat transfer. The convective heat flux generated by the hot impinging jet is investigated by using both convective heat transfer formulation and conjugate heat transfer formulation. Computational fluid dynamics(CFD) code was used to compute the heat flux distribution. The RANS equation and the k-e turbulence model were used to analyze the thermal flow of the impinging jet. The heat flux distribution near the stagnation zone obtained by the conjugate heat transfer analysis shows more reasonable than the convective heat transfer analysis.

Single Engine Failure during Approach and Transition Analyses of VTOL Aircraft (수직이착륙기의 착륙접근시 단일엔진고장 및 비행전이 영역 해석)

  • Yoon, Sang-Joon;Ahn, Byung-Ho;Choi, Dong-Hoon;Mavris, Dimitri
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • The objective of this study is to find the optimal thrust condition and wing loading of a vertical take-off and landing (VTOL) fixed-wing aircraft through a single engine failure analysis during landing approach and an analysis of transition flight. The aircraft analysis modules used in the study are based on the aircraft synthesis program. To achieve the computing infrastructure for aircraft design and analysis, the EMDIOS was employed as a design framework, which is a semi-completed application program and ready to customize. Simulation results reveal the most critical height at the event of single engine failure is approximately 40 ft. And, in order to avoid a significant loss in altitude during the transition, the thrust to weight ratio must be kept high, while both the engine tilt speed and the wing loading must be kept low, as confirmed by the analysis results.

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots (멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구)

  • Kim, Hyeon;Jeong, Heon Sul;Chong, Kil To;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties (불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계)

  • Lee, Jong-Hyo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Development of Simulation Program for Tilt Rotor Aircraft (틸트로터 항공기 비선형 시뮬레이션 프로그램 개발)

  • Yoo, Chang-Sun;Choi, Hyung-Sik;Park, Bum-Jin;Ahn, Sung-Jun;Kang, Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

Quadrotor Attitude Stabilization by Using PID Controller (PID 제어기를 이용한 쿼드로터 자세 안정화)

  • Kim, Yongyoung;Shin, Junhee;Lee, Sunik;Lee, Hyounggon;Lim, Hyunmin;Kim, Kwangjin;Lee, Sangchul
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • Quadrotor is an aircraft which is possible in Vertical Take-off and Landing(VTOL). This aircraft can not only be created as an Unmanned Aerial Vehicle(UAV), but also can be easily used in various fields because of its simplicity of construction. This study is mainly conducted with two main purposes. The first goal is designing the quadrotor focusing on the lightweight and protecting the airframe. The second purpose is stabilizing the quadrotor's attitude by using the PID controller. MATLAB simulation is performed for obtaining PID gain based on equations of motion. We used the compensation filter technique for the calibration of sensor data. PID gain has been drawn out based on the MATLAB simulation. The efficiency of the attitude control is improved by calibration of sensor data.

  • PDF