<학술논문> DOI http://dx.doi.org/10.3795/KSME-A.2014.38.2.137 ISSN 1226-4873(Print) 2288-5226(Online)

멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구[§]

김 현*·정헌술*·정길도**·이덕진** *군산대학교 기계자동차공학부. **전북대학교 전자공학부

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots

Hyeon Kim^{*}, Heon Sul Jeong^{*} Kil To Chong^{**} and Deok Jin Lee^{*†} * School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ. ** School of Electronics Engineering, Chonbuk Nat'l Univ.

(Received September 4, 2013; Revised November 19, 2013; Accepted November 19, 2013)

Key Words: Unmanned Aerial Vehicle(무인기), Multi-Rotor Robot(멀티로터로봇), Vertical Take Off and Landing(수 직 이착륙), Dynamic Modeling(동역학적모델링), Flight Control Techniques (비행제어기법)

초록: 멀티로터는 여러 개의 로터로 이루어진 무인 비행로봇으로써, 로터의 개수에 따라서 트라이로터, 쿼드로터, 헥사로터, 옥토로터 등으로 나누어 진다. 멀티로터는 수직이착륙(VTOL) 및 높은 기동성으로 인하여 다른 무인 비행로봇에 비하여 건물이 밀집되어 있는 도심과 같은 지역의 정찰 및 감시 등 여러 응용분야에 적합하게 활용될 수 있다. 본 논문에서는 멀티로터란 이름으로 연구되고 있는 트라이로터, 쿼드로터, 헥사로터 및 옥토로터 비행로봇에 대한 통합된 동역학적 모델링에 관한 수식을 도출 및 비교 분석을 수행하고, 획득된 수식을 이용하여 각각의 멀티로터 동작원리 및 제어기법에 대한 연구를 수행 하였다. 유도된 멀티로터의 동역학 모델링을 이용하여 각각의 멀티로터 형태에 따른 구동원리와 그에 따라 작용하는 힘과 모멘트에 대한 관계식을 유도하였으며, 연속루프닫음기법 기반자세 및 고도제어기 를 적용하여 각각의 멀티로터 비행로봇의 구동 및 제어 성능을 시뮬레이션을 통해 검증하였다.

Abstract: A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

q

r

U,

v

ø

- 기호설명 -

p_n	: 관성좌표계에서 기체의 북쪽방향 위치
p_e	: 관성좌표계에서 기체의 동쪽방향 위치
p_d	: 관성좌표계에서의 고도
p	: 동체좌표계에서 측정된 롤 각속도

§ 이 논문은 대한기계학회 IT 융합부문 2013 년도 춘계학술대회
(2013.5.910., 대명리조트) 발표논문임.
† Corresponding Author, deokjlee@kunsan.ac.kr
© 2014 The Korean Society of Mechanical Engineers

: 동체좌표계에서의 측정된 피치 각속도 : 동체좌표계에서 측정된 요 각속도 : 동체좌표계에서 측정된 x 속도 : 동체좌표계에서 측정된 V속도 : 동체좌표계에서 측정된 z 속도 w : 오일러각 롤 : 오일러각 피치 θ : 오일러각 요 Ψ : 기체의 질량 M: 로터의 질량 m_r : 기체의 중심반지름 R

l : 중심에서 한 로터까지의 거리
 I_{xx}, *I_{yy}*, *I_{zz} : x 축*, *y 축*, *z 축* 관성모멘트

1. 서 론

최근 통신과 센서기술 및 전자 광학 장비를 이 용한 영상정보획득에 대한 기술이 발전함에 따라 서 자율 무인시스템에 대한 관심이 증가되고, 국 내외에서 다양한 연구가 활발하게 진행되고 있 다.⁽¹⁾ 그 중에서도 자율 무인비행체(Unmanned Aerial Vehicle)는 주로 군사적 용도로써 사용되어 왔고, 최근에는 정찰 및 보안감시, 환경데이터 수 집 등을 목적으로 민간분야에서도 사용 되고 있으 며, 특히 사람이 가기 너무 위험하거나 반복적이 고 광범위한 탐사 목적에 활용되고 있다.(2,3) 무인 비행로봇은 날개 형상에 따라서 고정익 무인비행 로봇과 회전익 무인비행로봇으로 나눌 수 있으며, 고정익 무인 비행로봇의 경우, 이륙 하는데 충분 한 거리가 필요하며, 장애물이 많거나 낮은 고도 에서는 적합하지 않다. 반대로 단일 메인로터를 사용하여 동력을 얻는 회전익 무인비행로봇인 헬 리콥터는 수직이착륙 및 정지비행이 가능하여 정 찰 및 인명구조에 적합하지만, 비행체 구조와 제 어가 복잡하며 메인 로터의 고장 시 사고 위험이 큰 단점을 가지고 있다. 이에 비해 로터가 여러 개 달린 멀티로터는 수직이착륙과 정지 비행이 가 능하고, 급기동과 같은 기동성능이 매우 뛰어난 장점을 가지고 있으며, 하나 또는 그 이상의 로터 고장 시에도 다른 여분의 로터를 활용하여 기동을 유지할 수 있는 매우 큰 장점을 가지고 있다.

멀티로터는 장착된 로터의 개수에 따라서 트라 이로터, 쿼드로터, 헥사로터, 옥토로터 등으로 분 류된다. 현재 이러한 멀티로터 중 국내외에서 로 터가 4개로 이루어진 쿼드로터⁽⁴⁻⁶⁾에 대한 연구가 주를 이루고 있으며, 트라이로터⁽⁷⁻⁸⁾ 헥사로터⁽⁹⁾ 옥토로터^(10,11) 등 각각 개별적인 타입에 대하여 연 구가 다양한 분야에서 여러 방향으로 진행 되어지 고 있다.

본 논문에서는 각 분야에서 선별적으로 연구되 고 있는 각각의 멀티로터 비행체에 대한 모델링 및 제어기술에 대한 통합된 해석적 수식을 제공하 고자 한다. 먼저 트라이로터, 쿼드로터, 헥사로터, 및 옥토로터 비행로봇에 대하여 운동학적 및 운동 역학적 수식을 유도하고, 각 멀티로터 타입에 대 하여 모션구동원리와 그에 따른 힘과 모멘트에 대 해 유도 식을 도출하였다. 그리고 도출된 모델링 및 힘과 모멘트 수식을 기반으로, 멀티로터 기동 을 위한 제어기를 설계하였다. 본 연구의 제어기 로는 연속루프닫음(Successive Loop Closure, SLC)⁽¹²⁾ 기반 PID 제어기를 제안하였으며, 제안된 방법의 특징으로는 제어기의 게인 값(Gains)을 SLC를 적 용 해석적인 방법으로 자동으로 도출할 수 있도록 하는 것이다. 각각 타입 별 멀티로터의 비행운동 을 위해서 유도된 힘과 모멘트 관계식 및 제안된 제어기 성능 검증을 위하여 다양한 시뮬레이션을 수행하였다.

논문의 내용은 다음과 같이 구성된다. 먼저 I 장 에서 멀티로터의 정의 및 운동좌표에 대하여 설명 하고, II 장에서 멀티로터의 운동학적 및 동역학적 모델링을 수행하고, 각각의 멀티로터 타입에 대한 구동원리에 대하여 설명하였으며, III 장에서는 각 멀티로터에 대한 제어기를 설계하였고, IV 장에서 는 설계한 제어기를 바탕으로 시뮬레이션을 수행 하였다. 마지막 장에서는 수행한 연구의 결론과 향후 연구내용을 정리하였다.

2. 멀티로터 동역학적 모델링

Fig. 1 은 멀티로터 비행로봇의 6 자유도 운동을 위한 좌표계를 보여주고 있으며, 좌표계로는 지상 에 고정된 관성좌표계(Inertial Frame)와 동체좌표계 (Body Frame)가 사용된다. $\mathbf{p} = (p_n, p_e, p_d)^T$ 는 관 성좌표계로부터 멀티로터의 북쪽(North), 동쪽 (East), 아래(Down) 방향으로의 위치를 나타낸다.

Fig. 1 Notation of multi-rotor equations of motion

138

그리고 동체좌표계는 기체에 고정되어 기체의 Nose 방향을 x, 기체의 오른쪽 날개방향을 y, 기 체의 아래방향을 z 로 정의한다. 비행체 위치 (p_n, p_e, p_d)는 관성좌표계에서 표시되고, 기체의 측정각속도(p,q,r) 및 측정되는 속도(u,v,w)는 동체좌표계에서 표시된다. 그리고 좌표계간의 변 환을 위해 오일러각 (φ,θ,ψ)을 정의한다. 기체좌 표계는 멀티로터 비행체의 무게중심에 고정되고 방향은 관성좌표계와 동일한 좌표계를 의미하며, 기체좌표부터 동체좌표계로 변환하기 위한 변환행 렬은 다음과 같다.

$$R_{\nu}^{b}(\phi,\theta,\psi) = R_{\nu2}^{b}(\phi) R_{\nu1}^{\nu2}(\theta) R_{\nu}^{\nu1}(\psi)$$

$$= \begin{bmatrix} c\theta c\psi & c\theta s\psi & -s\theta \\ s\phi s\theta c\psi - c\phi s\psi & s\phi s\theta s\psi + c\phi c\psi & s\phi c\theta \\ c\phi s\theta c\psi + s\phi s\psi & c\phi s\theta s\psi - s\phi c\psi & c\phi c\theta \end{bmatrix}$$
(1)
$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

2.1 멀티로터 운동학

멀티로터 비행체의 운동은 직선운동과 회전운동 으로 나눌 수 있으며, 관성좌표계와 기체의 속도 성분의 관계는 다음과 같이 얻어진다.⁽¹²⁾

$$\frac{d}{dt} \begin{bmatrix} p_n \\ p_e \\ p_d \end{bmatrix} = R_b^v \begin{bmatrix} u \\ v \\ w \end{bmatrix} = (R_v^b)^T \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$= \begin{bmatrix} c\theta c\psi & s\phi s\theta c\psi - c\phi s\psi & c\phi s\theta c\psi + s\phi s\psi \\ c\theta s\psi & s\phi s\theta s\psi + c\phi c\psi & c\phi s\theta s\psi - s\phi c\psi \\ -s\theta & s\phi c\theta & c\phi c\theta \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(2)

멀티로터의 회전운동은 기체의 각속도성분과 오 일러각의 미분의 형태로 다음과 같이 나타낼 수 있다.

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi \sec\theta & \cos\phi \sec\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(3)

2.2 멀티로터 운동역학

멀티로터 시스템에 작용하는 역학적인 성분은 병진운동에 대한 힘과 회전운동에 대한 모멘트로 나누어 쓸 수 있으며, 뉴턴법칙은 관성좌표계에서 적용된다. 먼저 병진운동에서의 뉴턴법칙은 다음 과 같다.⁽¹²⁾

$$m\frac{d\mathbf{v}}{dt_i} = m(\frac{d\mathbf{v}}{dt_b} + \mathbf{\omega}_{b/i} \times \mathbf{v}) = \mathbf{f}$$
(4)

여기에서 **v** = (u,v,w)^T, ω_{b/i} = (p,q,r)^T 이며, 각각 동체좌표계에서의 속도와 각속도이다. 동체 좌표계에서 측정된 속도 값을 관성좌표계에서의 위치로 변환하기 위해 앞서 정의한 회전행렬 R^b_{ν} 을 이용하며, 이때, 멀티로터에 작용하는 외부 힘 은 중력 항만을 고려한다고 하면, 식 (4)는 다음과 같이 유도 된다.

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} rv - qw \\ pw - ru \\ qu - pv \end{bmatrix} + \begin{bmatrix} -g\sin\theta \\ g\cos\theta\sin\phi \\ g\cos\theta\cos\phi \end{bmatrix} + \frac{1}{m} \begin{bmatrix} 0 \\ 0 \\ -F \end{bmatrix}$$
(5)

식 (5)는 멀티로터의 병진운동에 관한 수식이며, *z* 축의 방향의 힘만 작용한다. 다음으로 멀티로터 의 회전운동에 대한 뉴턴-오일러 운동법칙은 다음 과 같이 표현된다.

$$\frac{d\mathbf{h}}{dt_i} = \frac{d\mathbf{h}}{dt_b} + \mathbf{\omega}_{b/i} \times \mathbf{h} = \mathbf{m}$$
(6)

여기에서 **h** = **I**ω_{b/i} (Angular Momentum)이며, **m**은 멀티로터에 가해진 토크(Torque)이다.

$$\mathbf{I} = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}$$
(7)

식 (7)에서 관성모멘트 행렬 요소 (I_{xx}, I_{yy}, I_{zz}) 는 다음과 같이 계산 되어진다.

$$I_{xx} = I_{yy} = \frac{2MR^2}{5} + 2l^2 m_r$$

$$I_{zz} = \frac{2MR^2}{5} + 4l^2 m_r$$
(8)

M은 멀티로터 무게, R은 멀티로터 중심 반지름, l
 은 로터와 기체 중심 사이의 거리, m_r은 로터 하나
 의 무게이다. 식 (6)은 다음과 같이 쓸 수 있다.

$$\frac{d}{dt} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \frac{I_{yy} - I_{zz}}{I_{xx}} qr \\ \frac{I_{zz} - I_{xx}}{I_{yy}} pr \\ \frac{I_{xx} - I_{yy}}{I_{zz}} pq \end{bmatrix} + \begin{bmatrix} \frac{1}{I_{xx}} \tau_{\phi} \\ \frac{1}{I_{yy}} \tau_{\theta} \\ \frac{1}{I_{zz}} \tau_{\psi} \end{bmatrix}$$
(9)

여기서 $\mathbf{m}^{b} = (\tau_{\phi}, \tau_{\theta}, \tau_{\psi})^{T}$ 멀티로터 동체좌표에 서의 토크를 나타낸다. 이제까지 도출된 운동학 수식과 운동역학 수식을 이용하고, 회전운동이 크 지 않다는 가정을 적용하여 최종적인 6 자유도의 운동방정식은 다음과 같이 표현된다.^(5,12)

$$\begin{aligned} \ddot{p}_{n} &= -(c\phi s\theta c\psi + s\phi s\psi)\frac{1}{m}F\\ \ddot{p}_{e} &= -(c\phi s\theta s\psi - s\phi c\psi)\frac{1}{m}F\\ \ddot{p}_{d} &= g - (c\phi c\theta)\frac{1}{m}F\\ \ddot{p}_{d} &= g - (c\phi c\theta)\frac{1}{m}F\\ \ddot{p}_{d} &= \dot{\phi}\psi(\frac{I_{yy} - I_{zz}}{I_{xx}}) + \frac{J_{r}}{I_{xx}}\dot{\theta}\Omega_{r} + \frac{1}{I_{xx}}\tau_{\phi}\\ \ddot{\theta} &= \dot{\phi}\psi(\frac{I_{zz} - I_{xx}}{I_{yy}}) - \frac{J_{r}}{I_{yy}}\dot{\phi}\Omega_{r} + \frac{1}{I_{yy}}\tau_{\theta}\\ \ddot{\psi} &= \dot{\phi}\dot{\theta}(\frac{I_{xx} - I_{yy}}{I_{zz}}) + \frac{1}{I_{zz}}\tau_{\psi} \end{aligned}$$
(10)

여기서 J_r 은 로터의 관성모멘트, Ω_r 는 프로펠러 회전속도이며, $(J_r \dot{\theta} \Omega_r, J_r \dot{\phi} \Omega_r)$ 항목은 프로펠러 회 전으로 인한 자이로효과(Gyroscopic Effect)를 나타낸 다. 멀티로터의 기본적인 수학적 모델링은 식 (10)으 로 표현될 수 있지만, 멀티로터의 형상에 따라서 각 모터에서 나오는 힘과 모멘트의 관계식의 차이가 존 재한다. 따라서 다음 장에서 이러한 각각의 트라이 로터(Tri-Rotor), 쿼드로터(Quad-Rotor), 헥사로터 (Hexa-Rotor), 옥토로터(Octo-Rotor)로 나누어 비행운 동을 위한 힘과 모멘트의 수식을 유도하기로 한다.

2.3 쿼드로터의 힘과 모멘트 관계식 쿼드로터는 기초 플랫폼과 4 개의 프레임에 모

Fig. 2 Principle of quad-rotor operation

터를 고정할 수 있는 구조로 되어있으며, 4 개의 로터는 대칭과 평행을 이루고 있고, 전후 및 좌우 가 한 쌍으로 회전한다(Fig. 2 참조). 전후 한 쌍의 로터는 시계방향으로 회전하고, 좌우의 로터는 쌍 은 반 시계방향으로 회전한다. 쿼드로터의 운동원 리가 Table 1 에서 보여지며, 운동방향은 모두 +방 향이다.

Table 1 에서의 High, Mid, 그리고 Low 는 Fig. 2 에서 보여지듯이 1번, 2번, 3번, 4번 로터의 추력 의 세기를 나타내었으며, 1 번로터가 쿼드로터의 Nose 방향이다. Fig. 2 및 Table 1 의 (a)는 4개의 로 터의 회전수가 같으므로, 수직 이착륙 및 호버링 을 보여준다. (b)는 쿼드로터의 회전수가 1 번과 3 번 로터가 같고, 4 번 로터가 상대적으로 크므로 오른쪽 방향의 롤(Roll)운동을 보여준다. (c)는 쿼드 로터의 회전수가 2 번 및 4 번로터가 같고 1 번로 터가 상대적으로 크므로, 쿼드로터의 Nose 방향의 반대방향으로 피치(Pitch)운동을 한다. (d)는 쿼드로 터의 회전수가 1 번과 3 번이 같고 2 번과 4 번이 같지만, 2 번과 4 번이 상대적으로 추력이 더 크므 로, 블레이드 회전방향의 반대방향으로 토크를 발 생시켜 시계 방향으로 요(Yaw)운동을 발생하게 된 다. 쿼드로터의 운동시 힘과 모멘트를 설명하기 위해 Layout 을 표시하면 Fig. 3 과 같다.

쿼드로터의 중심부터 로터의 중심까지의 거리가 *l*이고 각각 로터의 각도가 90 도로 일정하다. 그 러므로 힘과 모멘트는 식 (11)과 같이 얻어진다.

Table 1 Principle of quad-rotor operation

운동	로터1	로터2	로터3	로터4
(a)호버링	High	High	High	High
(b)롤	Mid	Low	Mid	High
(c)피치	High	Mid	Low	Mid
(d)요	Low	High	Low	High

140

$$\begin{bmatrix} F \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = A_{Q} \begin{bmatrix} \omega_{1}^{2} \\ \omega_{2}^{2} \\ \omega_{3}^{2} \\ \omega_{4}^{2} \end{bmatrix}$$
(11)

$$A_{Q} = \begin{bmatrix} k_{1} & k_{1} & k_{1} & k_{1} \\ 0 & -lk_{1} & 0 & lk_{1} \\ lk_{1} & 0 & -lk_{1} & 0 \\ -k_{2} & k_{2} & -k_{2} & k_{2} \end{bmatrix}$$

쿼드로터의 한 로터에서부터 나오는 추력과 모 멘트는 $F_i = k_1 \omega_i^2$, $\tau_i = k_2 \omega_i^2$ (i = 1,2,3,4) 로써 구해 진다. k_1 , k_2 는 실험으로 얻어지는 상수 값이다.

실제적으로 쿼드로터의 모션제어를 위해서 모터 의 개별적인 회전속도를 구해야 하며, 이를 위해 정방행렬 A_Q 의 역행렬을 직접적으로 구해서 얻을 수 있다. 최종적으로 각 모터의 회전 속도를 위한 제어 입력 값은 식 (12)와 같다.

$$\begin{bmatrix} \omega_{1}^{2} \\ \omega_{2}^{2} \\ \omega_{3}^{2} \\ \omega_{4}^{2} \end{bmatrix} = A_{Q}^{-1} \begin{bmatrix} F \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix}$$
(12)

 $F = F_1 + F_2 + F_3 + F_4$ 는 전체 추력을 나타내며, τ_{ϕ} 는 롤토크(Roll Torque), τ_{θ} 는 피치토크(Pitch Torque), τ_{ψ} 는 요토크(Yaw Torque)이다.

Fig. 4 Principle of hexa-rotor operation

2.4 헥사로터의 힘과 모멘트 관계식

핵사로터(Hexa-Rotor) 비행체는 기초 플랫폼과 6 개의 프레임에 모터를 고정할 수 있는 구조로 되 어있다 (Fig. 4 참조). 그리고 Table 2 에서 이러한 헥사로터의 구동원리가 설명하고 있으며. 운동방 향은 모두 +방향이다.

Table 2 는 Fig. 4 에서 보여지는 각 1 번, 2 번, 3 번, 4 번, 5 번, 6 번 로터의 추력의 세기를 나타내었 으며, 1 번 로터가 헥사로터의 Nose 방향이다. Table 2 의 (a)는 6 개의 로터의 회전수가 같으므로, 수직 이착륙 및 호버링을 보여준다. (b)는 헥사로터의 회전수가 1 번과 4 번 로터가 같고, 2 번과 3 번 로 터가 같으며, 5 번과 6 번 로터가 같다. 상대적으로 5 번과 6 번 로터의 추력이 강하므로 헥사로터는 오른쪽 방향으로 롤(Roll)운동을 한다. (c)는 헥사로 터의 회전수가 2번, 3번, 5번, 6번 로터가 같고, 1 번 로터의 회전수가 상대적으로 4 번 로터 보다 크다. 그러므로, 헥사로터의 Nose 방향의 반대방향 으로 피치(Pitch)운동을 한다. (d)는 헥사로터의 회 전수가 1번, 3번, 5번이 이 같고 2번, 4번, 6번이 같지만, 상대적으로 2번, 4번, 6번의 추력이 크므 로, 추력이 큰 블레이드 회전방향의 반대방향으로 토크를 발생시켜 시계 방향으로 요(Yaw)운동을 하 게 된다. 헥사로터의 힘과 모멘트를 나타내기 위 해 Layout을 그리면 다음 Fig. 5 와 같다.

Table 2 Principle of hexa-rotor operation

운동	로터1	로터2	로터3	로터4	로터5	로터6
(a)호버링	High	High	High	High	High	High
(b)롤	Mid	Low	Low	Mid	High	High
(c)피치	High	Mid	Mid	Low	Mid	Mid
(d)요	Low	High	Low	High	Low	High

Fig. 6 Principle of octo-rotor operation

핵사로터의 중심부터 한 로터까지의 거리가 *l* 이다. 핵사로터의 로터사이의 각도가 60 도로 일정 하므로, Nose 방향인 *x* 축으로부터 각각의 로터 2, 3, 5, 6 까지의 거리를 *l*sin(30), *l*cos(30) 이용하 여 분할할 수 있으며, 비행운동을 위한 힘과 모멘 트는 다음과 같이 식 (13)과 같이 유도된다.

$$\begin{bmatrix} F \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = A_{H} \begin{bmatrix} \omega_{1}^{2} \\ \omega_{2}^{2} \\ \omega_{3}^{2} \\ \omega_{4}^{2} \\ \omega_{5}^{2} \\ \omega_{6}^{2} \end{bmatrix}$$
(13)

여기에서

$$A_{H} = \begin{bmatrix} k_{1} & k_{1} & k_{1} & k_{1} & k_{1} & k_{1} \\ 0 & -clk_{1} & -clk_{1} & 0 & clk_{1} & clk_{1} \\ lk_{1} & slk_{1} & -slk_{1} & -lk_{1} & -slk_{1} & slk_{1} \\ -k_{2} & k_{2} & -k_{2} & k_{2} & -k_{2} & k_{2} \end{bmatrix}$$

여기에서 $s = sin(30)_{,} c = cos(30)$ 이며, 헥사로 터의 한 로터에서 나오는 추력과 모멘트는 $F_i = k_1 \omega_i^2, \tau_i = k_2 \omega_i^2$ (i = 1, 2, ..., 6) 수식으로 구해진 다. k_1, k_2 는 실험으로 얻어지는 상수 값이다. 헥사 로터 비행체 추력제어를 위해 모터의 개별적인 회 전속도를 구해야 하며, 이를 위해 행렬 A_H 의 역행 렬을 이용해 얻어야 한다. 하지만, A_H 는 정사각 행렬이 아니므로, 역행렬을 바로 얻을 수 없다. 그 러므로 본 논문에서는 Moore-Penrose 형태의 Pseudo-Inverse 방법을 이용하여 역행렬을 계산하였

Table 3 Principle of octo-rotor operation

운동	A그룹	B그룹	C그룹	D그룹
(a)호버링	High	High	High	High
(b)롤	Mid	Low	Mid	High
(c)피치	High	Mid	Low	Mid
(d)요	Low	High	Low	High

으며, 아래의 수식으로 나타낼 수 있다.

$$\begin{cases} P_{Right} = A^T \cdot (A \cdot A^T)^{-1} & (\text{if } m < n) \\ P_{left} = (A^T \cdot A)^{-1} \cdot A^T & (\text{if } m > n) \end{cases}$$
(14)

m×n 행렬 A 에서 P 는 Pseudo-Inverse 행렬이며, A^T는 행렬 A 의 전치행렬이다. 따라서 위의 Pseudo-Inverse 역행렬 식 (14)를 이용하면 각 개별적인 헥사로 터의 각속도는 식 (15)와 같이 구할 수 있다.

 τ_{ϕ} 는 롤토크(Roll Torque), τ_{θ} 는 피치토크(Pitch Torque), τ_{ψ} 는 요토크(Yaw Torque)를 나타낸다.

2.5 옥토로터의 힘과 모멘트 관계식

비슷한 방식으로 옥토로터(Octo-Rotor)는 기초 플랫폼과 8 개의 프레임에 모터를 고정할 수 있는 구조로 되어있으며, 특징적으로 각각 로터는 두 개씩 쌍으로 회전 운동하도록 설계된다. Fig. 6 에 서 보여주듯이 1 번과 2 번 로터를 그룹 A, 3 번과 4 번 로터를 그룹 B, 5 번과 6 번 로터를 그룹 C, 7 번과 8 번 로터를 그룹 D 라고 정의할 수 있으며, 운동방향은 모두 +방향이다.

Table 3 은 Fig. 6 에서 보여지는 옥토로터 그룹 A, B, C, D 의 로터 회전 추력을 나타낸 것이며, 각 로터 짝(그룹)을 구성하는 2 개의 로터 회전수는 같다. 로터 그룹 A 의 방향이 옥토로터의 Nose 방 향이다. Fig. 6 및 Table 3 의 (a)는 각 4 개의 로터그 룹의 회전수가 같으므로, 수직 이착륙 및 호버링 을 보여준다 (b)는 옥토로터의 회전수가 A 와 C 번 로터가 같고, D 의 로터 그룹이 상대적으로 크

Fig. 7 Layout of octo-rotor

므로, 옥토로터의 오른쪽 방향의 롤(Roll)운동을 보 여준다. (c)는 옥토로터의 회전수가 B 및 D로터그룹 이 같고 로터그룹 A 가 상대적으로 크므로, 옥토로 터의 Nose 방향의 반대방향으로 피치(Pitch)운동을 한 다. (d)는 옥토로터 로터 그룹의 회전수가 A 번과 C 번이 같고 B 번과 D 번이 같지만, 상대적으로 B 번과 D 번이 상대적으로 추력이 더 크므로, 블레이드 회 전방향의 반대방향으로 토크를 발생시켜 시계 방향 으로 요(Yaw)운동을 하게 된다. 힘과 모멘트를 나타 내기 위해 레이아웃을 그리면 다음 Fig.7과 같다.

옥토로터의 형상은 로터 사이의 각도가 45 도로 일정하므로, *x* 축이나 *y* 축으로부터 로터의 거리는 $l\sin(22.5)$, $l\cos(22.5)$ 을 이용하여 계산할 수 있으 므로, 아래와 같이 각 로터의 회전속도와 힘 및 토 크 사이의 관계식은 식 (16)과 같이 계산 된다.

여기에서

 $A_{O1} = \begin{bmatrix} k_1 & k_1 \\ lsk_1 & -lsk_1 & -lck_1 & -lck_1 & -lsk_1 & lsk_1 & lck_1 & lck_1 \\ lck_1 & lck_1 & lsk_1 & -lsk_1 & -lck_1 & -lck_1 & -lsk_1 & lsk_1 \\ -k_2 & -k_2 & k_2 & k_2 & -k_2 & -k_2 & k_2 \end{bmatrix}$

여기에서, *l*은 중심부터 한 로터까지의 거리이며, s=sin(22.5), c=cos(22.5) 이다. 그리고 추력과 모 멘트는 $F_i = k_1 \omega_i^2$, $\tau_i = k_2 \omega_i^2$ (i=1,2,....,8) 로써 구해 지며, k_1, k_2 는 실험으로 얻어지는 상수 값이다. 각 각의 로터의 각속도를 구하기 위해 옥토로터의 로 터를 그룹으로 표시하면 쿼드로터와 유사한 식으 로 표현할 수 있다. 식 (17)은 로터를 그룹으로 묶 어서 표현한 식이다.

$$\begin{bmatrix} F \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = A_{02} \begin{bmatrix} \omega_{A}^{2} \\ \omega_{B}^{2} \\ \omega_{C}^{2} \\ \omega_{D}^{2} \end{bmatrix}$$
(17)
$$(17)$$

$$A_{O2} = 2 \begin{bmatrix} k_1 & k_1 & k_1 & k_1 \\ 0 & -lsk_1 & 0 & lsk_1 \\ lsk_1 & 0 & -lsk_1 & 0 \\ -k_2 & k_2 & -k_2 & k_2 \end{bmatrix}$$

여기서 편리를 위해 s=sin(22.5)를 나타내며, 각 각의 로터의 속도는 로터짝의 속도와 같게 된다, 즉, ($\omega_1 = \omega_2 = \omega_A$, $\omega_3 = \omega_4 = \omega_B$, $\omega_5 = \omega_6 = \omega_C$ $\omega_7 = \omega_8 = \omega_D$)이다. 이제 옥토로터의 운동제어를 위한 로터의 각속도는 쿼드로터와 같이 직접적인 역행렬을 이용하여 얻을 수 있으며, 식 (18)과 같 이 유도 된다.

$$\begin{bmatrix} \omega_A^2 \\ \omega_B^2 \\ \omega_C^2 \\ \omega_D^2 \end{bmatrix} = A_{O2}^{-1} \begin{bmatrix} F \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix}$$
(18)

여기서 $F = F_1 + F_2 + \dots + F_8$ 는 전체 추력, τ_{ϕ} 는 롤토크(Roll Torque), τ_{θ} 는 피치토크(Pitch Torque), τ_{ψ} 는 요토크(Yaw Torque)이다.

2.6 트라이로터의 힘과 모멘트 관계식

Fig. 8 에서 보여지듯이 트라이로터(Tri-Rotor)는 기초 플랫폼과 3 개의 프레임에 모터를 고정할 수 있는 구조로 되어있지만, 요(Yaw)제어를 하기 위 하여 하나의 로터는 틸팅이 가능한 틸트로터로 구 성 된다. 다음 Fig. 8과 Table 4 에서 트라이로터의 구동원리를 설명하고 있으며, 운동방향은 모두 + 방향이다.

운동	로터 1(tilt)	로터 2	로터 3
(a) 호버링	High	High	High
(b) 롤	Mid	High	Low
(c) 피치	Low	High	High
(d) 요	High	High	High

Table 4 Principle of tri-rotor operation

Fig. 8 Principle of tri-rotor operation

Table 4 는 Fig. 8 에서 보여지는 각 1 번, 2 번, 3 번 로터의 추력의 세기를 숫자로 나타내었으며, 2 번과 3 번 로터 사이가 트라이로터의 Nose 방향이 다. Fig. 8 및 Table 4 의 (a)에서 보여지듯 3개의 로 터의 추력이 같을 때 수직 이착륙(VTOL) 및 호버 링을 보여준다. 하지만, 여기에서 토크를 상쇄시켜 주기 위해서는 1 번 틸트로터가 기울어져서 구동 되어야 한다. (b)에서는 롤(Roll)운동을 보여주며, 상대적으로 추력이 적은 방향인 트라이로터의 오 른쪽으로 회전한다. (c)에서 피치(Pitch)운동을 보여 주며 상대적으로 추력이 적은 Nose 의 반대방향으 로 회전한다. (d)는 트라이로터의 요(Yaw)운동을 보여주는데, 일반적인 쿼드, 헥사, 옥토로터와는 다르게, 틸트로터인 1 번 로터가 일정 각도만큼 기 울어진 뒤 추력을 발생시켜 효율적으로 요(Yaw)운 동이 가능하다. Layout 은 다음 Fig. 9 와 같다.

각각 한 로터에 대해 *l*sin(30), *l*cos(30) 을 이용 하여 거리를 분할할 수 있다. 1 번로터는 틸트로터 이므로, 각도α에 의해 *F_y*의 힘이 추가적으로 발 생한다. 1 번 로터에 대한 추력은 다음 Fig. 10 에서 자세히 설명된다.

다른 멀티로터와는 달리, 로터의 개수가 홀 수 이므로 토크가 상쇄가 되지 않기 때문에 로터 1 의 틸트각도 α 에 의해, 로터에서 발생되는 추력이 *z* 방향과 *y* 방향으로 분할되어 발생한다. 각도α

Fig. 10 Layout of tiltrotor

가 0 일 때는, F_y가 발생하지 않으며, *z*축 방향 의 힘만 고려하면 된다. 그러므로 트라이로터의 힘과 모멘트는 식 (19)와 같이 유도될 수 있다.

$$\begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \\ \tau_{\phi} \\ \tau_{\phi} \\ \tau_{\psi} \end{bmatrix} = A_{T} \begin{bmatrix} \omega_{1}^{2} \\ \omega_{2}^{2} \\ \omega_{3}^{2} \end{bmatrix}$$
(19)
$$\stackrel{(19)}{(27) \, \text{eff}} \lambda_{T},$$

$$A_{T} = \begin{bmatrix} k_{1} \sin \alpha & 0 & 0 \\ k_{1} \cos \alpha & k_{1} & k_{1} \\ 0 & slk_{1} & -slk_{1} \\ -lk_{1} \cos \alpha + k_{2} \sin \alpha & clk_{1} & clk_{1} \\ lk_{1} \sin \alpha + k_{2} \cos \alpha & k_{2} & -k_{2} \end{bmatrix}$$

이때, s=sin(30), c=cos(30) 이며, *l*은 중심부 터 한 로터까지의 거리, α는 틸트각이며, *k*₁,*k*₂ 는 실험으로 얻어지는 상수 값이다. 행렬 *A*,는 정 사각행렬이 아니므로, 로터의 개별적인 속도를

Fig. 11 SLC based control structure for multi-rotors

구하기 위해 헥사로터에서 적용하였던 Pseudo-Inverse 방법을 이용하여 계산할 수 있다.

3. 제어기 설계

이 장에서는 앞서 얻은 멀티로터의 동역학적 모델 식을 기반으로 제어를 수행한다. 본 논문에서의 전 체적인 멀티로터의 비행제어구조는 다음과 같다.

Fig. 11 에서 보여지듯 고도와 자세 입력 값을 받아 멀티로터의 제어를 수행하며, Inverse Matrix 로부터 나오는 값이 각각 모터의 출력 값으로 사 용된다. 멀티로터의 자율비행제어를 위하여 Successive Loop Closure(SLC) 기반 고도 및 자세 PID 제어기를 설계하였으며, 특히, 제어기의 게인 값은 수동적(Manual) 튜닝 기법 대신 SLC 기법을 기반으로 해석적 접근법을 이용하여 자동적으로 계산 되도록 하였다.

일반적인 PID 제어기의 구조는 아래 식 (20)과 같이 계산되어 진다.⁽¹⁵⁾

$$u(t) = K_{p}e(t) + K_{I} \int_{0}^{t} e(t)dt + K_{D} \frac{de(t)}{dt}$$
(20)

여기에서 K_p 는 비례게인, K_d 는 미분게인, K_i 는 적분게인이며, e는 시스템의 오차 값이다. 멀티 로터 자세제어를 위한 제어기 구조는 식 (21)과 같이 계산된다.

$$\begin{cases} u_{2} = k_{p_{\phi}}(\phi_{des} - \phi) + k_{d_{\phi}}(\dot{\phi}_{des} - \dot{\phi}) + k_{i_{\phi}} \int_{0}^{t} (\phi_{des} - \phi) \delta t \\ u_{3} = k_{p_{\phi}}(\theta_{des} - \theta) + k_{d_{\phi}}(\dot{\theta}_{des} - \dot{\theta}) + k_{i_{\theta}} \int_{0}^{t} (\theta_{des} - \theta) \delta t \end{cases}$$

$$(21)$$

$$u_{4} = k_{p_{\psi}}(\psi_{des} - \psi) + k_{d_{\psi}}(\dot{\psi}_{des} - \dot{\psi}) + k_{i_{\psi}} \int_{0}^{t} (\psi_{des} - \psi) \delta t$$

본 논문에서는 PD 제어기를 설계 적용하였으며, 제어기의 게인 값을 효율적으로 자동으로 계산할 수 있는 SLC(Successive Loop Closure)⁽¹⁴⁾ 기법을 이용하여 효율적인 PD 제어기의 게인 값을 선정하였다. SLC 방 법의 적용을 통해서 K_p 와 K_d 값은 $K_i = 0$ 으로 계산 되며, 자세제어에 대한 전달함수는 식 (22)와 같다.

$$\frac{\phi(s)}{\phi_{des}(s)} = \frac{K_{p_{\phi}} / I_{xx}}{s^2 + (K_{d_{\phi}} / I_{xx})s + K_{p_{\phi}} / I_{xx}}$$
(22)

식 (22)에서 비례게인은 $K_p = M/A$ 으로 주어지 며, A는 입력의 Amplitude 값이며, M은 Saturation 의 최대값이다. 즉, 비례게인은 Saturation 값과 Command Input 의 비(Ratio)값을 나타낸다. 미 분게인 $K_d = 2\zeta\omega_n$ 으로 주어지며, ζ 는 감쇠비 (Damping Ratio)이며, ω_n 은 고유진동수(Natural Frequency)이다.⁽¹²⁾ 이는 2 차 전달함수 표준형에 대 한 감쇠비 $\zeta \approx 0.9$ 로써 구해질 수 있다. 유사한 방 법으로 피치 및 요에 대한 제어기가 설계 된다.

반면, 고도제어에 대한 입력 값은 식 (10)로부터 롤(Roll)각과 피치(Pitch)각이 매우 작다고 가정함 으로써(*φ*≈0,*θ*≈0)얻어지며, 식 (23)과 같다.

$$\ddot{p}_d = g - \frac{F}{m} \tag{23}$$

Successive Loop Closure 기법에서의 PID 제어 입력 값은 다음과 같다.

$$u_1 = k_{p_h}(h_{des} - h) + k_{d_h}(\dot{h}_{des} - \dot{h}) + k_{i_h} \int_0^t (h_{des} - h) \delta t$$
 (24)
이때, $h = -p_d$ 를 의미한다. 그러므로 고도제어에
대한 전달함수 값은 식 (25)와 같이 유도된다.

$$\frac{H(s)}{H_{des}(s)} = \frac{K_{p_h} + K_{i_h}s}{s^3 + K_{d_h}s^2 + K_{p_h}s + K_{i_h}}$$
(25)

고도 제어기의 게인 값은 자세제어기의 게인 값 을 계산할 때와 유사한 방법으로 기준입력에 대한 용구도(오버슈트, 정정시간 등)가 결정되면 계산될 수 있다.

4. 시뮬레이션 결과

본 장에서는 각각의 멀티로터 (쿼드로터, 헥사 로터, 및 옥토로터) 비행로봇에 대한 힘과 모멘 트 유도 식을 포함하는 모델링 식 및 SLC 기반 제어기에 대한 성능 해석을 위한 시뮬레이션을 수 행 하였다. 시뮬레이션에 사용된 멀터로터 비행체 의 파라미터 값은 아래 Table 5에 기술되어 있다.

추가적으로 멀티로터의 중심반지름 *R* =0.1m, 중 심에서 로터까지의 거리 *l* =0.33m, 로터 하나의 질량 *m_r* =0.2kg, 추력효율 *k*₁ =4.8E-3, 항력효율 *k*₂ =4.8E-4, 로터관성 *J_r* =6.4E-5 *kgm*² 값이 공통적 으로 사용되었다.

 Table 5 Multi-rotor parameter

Туре	M(kg)	$I_{xx}(kgm^2)$	$I_{yy}(kgm^2)$	$I_{zz}(kgm^2)$
Quad	1.2	0.048	0.048	0.096
Hexa	1.6	0.048	0.05	0.1
Octo	2	0.052	0.052	0.104

Fig. 14 Octo-rotor attitude control

게인 값은 SLC 기법을 적용하여 값을 선정하였으며, $K_p = 5.13$, $K_d = 1.0062$ 의 값을 갖는다. 시뮬 레이션을 위해서 2 도(deg)의 Step 입력을 주고 시뮬레이션을 수행하였다.

Fig. 12 부터 Fig. 14 는 자세 안정화를 위한 제어 성능을 보여주고 있으며, SLC 기반으로 계산된 게 인 값은 각 멀터로터의 비행성능을 안정적으로 유 도하고 있음을 알 수 있다. 자세는 대부분 1 초안 에 안정화가 이루어 졌으며, 쿼드로터의 자세제어 에서 약간 오버슈트 값을 갖지만 전체적으로 빠른 안정화가 이루어지고 있음을 알 수 있다.

Fig. 18 Quad-rotor 3D plot

Fig. 15 부터 Fig. 17 은 각 멀티로터의 고도제어 성능을 위한 시뮬레이션 결과 값을 보여주고 있다. 자세제어와 같이 제어기의 게인 값들은 SLC 기반 으로 계산되었다. 원하는 고도 목표 값은 1m 로 책정하였으며, 제어기입력 후 약 2.5 초 안에 쿼드 로터와 헥사로터 비행체가 목표 값에 도달하였음

Fig. 19 Hexa-rotor 3D plot

Fig. 20 Octo-totor 3D plot

을 알 수 있다. 옥토로터 비행체는 약 3 초 정도 시간이 소요되어, 도달시간의 차이는 조금 존재하 지만 모두 안정화 되었음을 알 수 있다. Fig. 18 에서 Fig. 20 는 각 멀티로터의 기동성을 알아보기 위해서 3 차원 시뮬레이션을 수행하였다. 다차원 운동성능 분석을 위해 앞에서와 같이 유도 된 모델링 식과 제어기를 적용하였다. 시뮬레이션 에서 보여주듯이 멀티로터 로봇이 원하는 위치에 정밀하고 신속하게 기동하고 있음을 확인하였다.

5. 결 론

본 논문에서는 트라이로터, 쿼드로터, 헥사로터 및 옥토로터 비행로봇의 모션제어를 위한 모델링 을 운동학과 운동역학적인 관점에서 체계적이고 통일된 수식을 유도하였다. 또한 각각의 다양한 멀티로터의 형상 타입에 대하여 발생되는 힘과 토 크에 대해 각각의 제어입력 수식을 유도하였다. 유도된 수학적 모델링 식과 제어입력 수식을 이용 하여 각각의 멀티로터 비행체의 운동시뮬레이션을 수행하여 기동성능 및 제어 성능을 검증하였다. 멀티로터의 자세제어는 1 초이내에, 고도제어는 2 초이내에 안정화 됨을 확인하였으며, 3 차원 시뮬 레이션을 이용하여 멀티로터 비행로봇의 정밀한 기동 및 위치 제어 성능을 확인하였다. 향후 외부 외란에 강인한 비선형제어기를 설계 및 실제 비행 체에 적용을 통한 실험 및 검증을 수행하고자 한 다.

후 기

본 연구는 2013 년도 정부(미래창조과학부)의 재 원으로 한국 연구재단의 지원을 받아 수행된 연구 임(No. 2013-025087) & (No. 2013-062410).

참고문헌

- (1) Schoenwald, D. A., 2000, "AUVs: in Space, Air, Water, and on the Ground," *IEEE Control Systems Magazine*, Vol. 20, No. 6, pp. 15~18.
- (2) Lee, D. J., Kaminer, I., Dobrokhodov, V., and Jones, K., 2010, "Autonomous Feature Following for Visual Surveillance Using a Small Unmanned Aerial Vehicle with Gimbaled Camera System," *International Journal of Control, Automation, and Systems*, Vol. 8, No. 5, pp. 957~966.
- (3) Lee, D. J. and Andersson, K., 2011, "Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks," *International Journal of Advanced Robotic Systems*, Vol. 8, No. 2, pp. 1~13.
- (4) Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I. L., Ruess, F., Suppa, M., and Burschka, D., 2012, "Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue," *IEEE Robotics & Automation Magazine*, Vol. 19, No. 3, pp. 46~56.
- (5) Bouabdalla, S., 2007, *Design and Control of Quadrotors with Application to Autonomous Flying*, EPFL, Ph.D. Dissertation.
- (6) Naidoo, Y., Stopforth R., and Bright G. 2011, "Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control," *International Journal of Advanced Robotic Systems*, Vol. 8, No. 4, pp. 139~149.
- (7) Barsk, K. J., 2012, *Model Predictive Control of a Tricopter*, Linköping University, MS thesis.
- (8) Yoo, D. W., Oh, H. D., Won D. Y., and Tahk, M. J., 2010, "Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles," *Int'l. Journal of Aeronautical & Space Sci*, Vol. 11, No. 3, pp. 167~174.
- (9) Baránek, R. and Šolc, F., 2012, "Modeling and Control of a Hexa-Copter", *IEEE Conference*

Publications, pp.19-23.

- (10) Victor, G. A. and Adrian, M. S., 2012, "Integral LQR Control of a Star-Shaped Octorotor", *INCAS BULLETIN*, Vol. 14, pp. 3~18.
- (11) Marks, A., Whidborne, J. F., and Yamamoto, I., September 2012, "Control Allocation for Fault Tolerant Control of a VTOL Octorotor," *International Conference on Control*, UK.
- (12) Beard, R. W. and McLain, T. W., 2012, *Small Unmanned Aircraft: Theory and Practice*, Princeton University Press, New Jersey, USA.
- (13) Baek, S. J., Lee, D. J., Park, S. H., and Chong, K. T.

2013, "Design of Lateral Fuzzy-PI Controller for Unmanned Quadrotor Robot," *Journal of Institute of Control, Robotics and System*, Vol. 19, No. 2, pp. 164~170.

- (14) Singh, A. M., Lee, D. J., Park, and Chong, K. T. 2012, "Attitude and Altitude Controllers for Quadrotor," *Proc. of IEEK Summer Conference*, pp. 2557~2558.
- (15) Mahony, R., Kumar, V., and Corke, P., 2012, "Multirotor Aerial Vehicles Modeling, Estimation and Control of Quadrotor," *IEEE Robotics & Automation Magazine*, Vol. 19, No. 3, pp. 20~32.

148