• Title/Summary/Keyword: V-bending

Search Result 336, Processing Time 0.038 seconds

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Variation of Fatigue Properties in Nanoskinned Ti-6Al-4V - Rotating Bending and Axial Loading Tension-Compression Cycle - (Ti-6Al-4V 재의 UNSM 처리에 의한 피로특성변화 - 회전굽힘 피로시험과 축하중 인장압축 피로시험 비교 -)

  • Suh, Min-Soo;Pyoun, Young-Shik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.443-449
    • /
    • 2012
  • Nanoskins were fabricated on a Ti-6Al-4V material by carrying out various surface treatments, i.e., deep rolling, laser shot peening, and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular for industrial applications. Fatigue tests were carried out using material test system (MTS); these tests included the axial loading tension-compression fatigue test (R = -1, RT, 5 Hz, sinusoidal wave) and rotating bending fatigue test (R = -1, RT, 3200 rpm). The analysis of the crack initiation pattern in the UNSM-treated material indicated that the crack was interior originating in the axial loading tension-compression cycle, and was surface originating in the bending fatigue test. UNSM treatment significantly improved the fatigue strength for the regime of above $10^6$ cycles that S-N curve of rotating bending stress clearly show the performance of a 5 mm titanium specimen after UNSM treatment is similar to that of an untreated 6 mm titanium specimen.

A Study on the Design and Development of Three Dimensional Bending Machine (3차원 Bending Machine 설계 및 개발에 관한 연구)

  • 이춘만;임상헌;김현진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

An experimental study for bending behavior of real size RC beams strengthened with carbon fiber sheets (탄소 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Kim, Seong-Do;Seong, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.574-580
    • /
    • 2009
  • This study is investigate the bending behavior of real size RC beams strengthened with carbon fiber sheets. For experimental study, 1 control beam and 8 strengthened beams of real size(4 NU-beams and 4 U-beams) are tested and compared. NU-beam has not a V-shaped band and V-beam has a V-shaped band. The variables of experiment are composed of the number of carbon fiber sheets, the existence of U-shaped band, and four point loading, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without V-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. For the strengthening method with carbon fiber sheets of the real size RC beams, it is required the finding a solution to the bonding problem.

  • PDF

Variation of Rotating Bending Fatigue Characteristics by UNSM on Ti-6Al-4V (Ti-6Al-4V재의 UNSM처리에 의한 회전굽힘피로특성변화)

  • Suh, Chang-Min;Pyoun, Young-Sik;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • In order to analyze feasibility of replacing a conventional 6-mm Ti bar with a 5-mm bar, a series of rotating bending fatigue tests were carried out on Ti-6Al-4V bars by strengthening the fatigue performance using a special technique called UNSM (Ultrasonic Nanocrystal Surface Modification). The results of S-N curves clearly showed that the performance of the 5-mm titanium specimen was similar to that of the 6-mm specimen when the UNSM treatment was applied. The 5-mm treated specimen converged with small scattering band into the linear line of the non-treated 6-mm one. Below the fatigue life of $10^5$ cycles, the UNSM treatment did not show any significant superiority in the bending stress and fatigue life. However, over the fatigue life of $10^5$ cycles, the effect of UNSM was superior for each fatigue life, and the bending stress became longer and higher than that of the untreated one. In the case of 6-mm Ti-bar with UNSM, the fatigue limit was about 592 MPa, and there was fatigue strength increase of about 30.7% at the fatigue life of $10^4$ cycles compared to the untreated 6-mm bar. Therefore, the compressive residual stress made by the UNSM in Ti-6Al-4V increased the fatigue strength by more than 30%.

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method (PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2019
  • A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.

Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading

  • Chavan, Shivaji G.;Lal, Achchhe
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.229-246
    • /
    • 2017
  • The dynamic bending response of single walled carbon nanotube reinforced composite (SWCNTRC) plates subjected to hygro-thermo-mechanical loading are investigated in this paper. The mechanical load is considered as wind pressure for dynamic bending responses of SWCNTRC plate. The dynamic version of the High Order shear deformation Theory (HSDT) for a composite plate with Matrix and SWCNTRC plate is first formulated. Distribution of fibers through the thickness of the SWCNTRC plate could be uniform or functionally graded (FG). The dynamic displacement response is predicted by using Nemarck integration method. The effective material properties of SWCNTRC are estimated by using micromechanics based modeling approach. The effect of different environmental condition, volume fraction of SWCNT, Width-to-thickness ratio, wind pressure, different SWCNTRC-FG plates, boundary condition, E1/E2 ratio, different temperature on dynamic displacement response is investigated. The dynamic displacement response is compared with the available literature and it shows good agreement.

Bending behavior of SWCNT reinforced composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2017
  • In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.