Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.4.119

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method  

Han, Kee Sun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.4, 2019 , pp. 119-126 More about this Journal
Abstract
A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.
Keywords
flexible thermoelectrics; flexible thermoelectric module; energy harvesting; PDMS; wearable device;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009).   DOI
2 T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A., 145-146, 423 (2008).   DOI
3 W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013).   DOI
4 W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A., 132, 337 (2006).   DOI
5 Science Today, YTN Science Inc. Oct. (2015) from https://science.ytn.co.kr/program/program_view.php?s_mcd=0082&s_hcd=&key=201510201612132845&page=1970
6 J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the p-Type $(Bi_{0.2}Sb_{0.8})_2Te_3$ with Variation of the Hot-Pressing Temperature", J. Microelectron. Packag. Soc., 18(4), 33 (2011).   DOI
7 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects", Energy Environ. Sci., 2, 466 (2009).   DOI
8 D. H. Park, M. Y. Kim, and T. S. Oh, "Thermoelectric Energyconversion Characteristics of the n-type $Bi_2(Te,Se)_3$ Nanocomposites Processed with Carbon Nanotube Dispersion", Current Appl. Phys., 11, S41 (2011).   DOI
9 T. S. Oh, "Fabrication Process and Power Generation Characteristics of Thermoelectric Thin Film Devices for Micro Energy Harvesting", J. Microelectron. Packag. Soc., 25(3), 67 (2018).   DOI
10 A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017).   DOI
11 W. J. Kim, and T. S. Oh, "Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters", J. Microelectron. Packag. Soc., 25(4), 67 (2018).   DOI
12 K. J. Shin, and T. S. Oh, "Micro-Power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-Chip Bonding", J. Electron. Mater., 44(6), 2026 (2015).   DOI
13 K. J. Shin, and T. S. Oh, "Thermoelectric Power-Generation Characteristics of a Thin-Film Device Processed by the Flip-Chip Bonding of $Bi_2Te_3$ and $Sb_2Te_3$ Thin-Film Legs Using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015).   DOI
14 X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites", Appl. Phys. Lett., 86, 62111 (2005).   DOI
15 D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-Type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
16 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial, and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
17 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008).   DOI
18 T. S. Oh, D. B. Hyun, and N. V. Kolomoets, "Thermoelectric Properties of the Hot-Pressed $(Bi,Sb)_2(T3,Se)_3$ Alloys", Scripta Meter., 42, 849 (2000).   DOI
19 B. Y. Jung, T. S. Oh, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Prepared by Mechanical Allying and Hot Pressing", J. Korean Phys. Soc., 31(1), 219 (1997).
20 H. J. Kim, H. C. Kim, D. B. Hyun, and T. S. Oh, "Thermoelectric Properties of p-Type $(Bi,Sb)_2Te_3$ Alloys Fabricated by the Hot Pressing Method", Met. Mater., 4(1), 75 (1998).   DOI
21 H. J. Kim, T. S. Oh, and D. B. Hyun, "Thermoelectric Properties of the Hot-Pressed $Bi_2(Te_{1-x}Se_x)_3$ Alloys with the $Bi_2Se_3$ Content", Korean J. Mater. Res., 8(5), 408 (1998).
22 H. C. Kim, B. Y. Jung, D. B. Hyun, and T. S. Oh, "Mechanical Alloying Process and Thermoelectric Properties of p-Type $(Bi_{1-x}Sb_x)_2Te_3$", J. Korean Inst. Met. Mater., 36(3), 416 (1998).
23 B. Y. Jung, T. S. Oh, S. E. Nam, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of p-Type $(Bi_{0.25}Sb_{0.75})_2Te_3$ Fabricated by Mechanical Allying Process", J. Korean Inst. Met. Mater., 35(1), 153 (1997).
24 D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Alloys Fabricated by Hot-Pressing Method", J. Mater. Sci., 36, 1285 (2001).   DOI
25 H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Powder Characteristics and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process", J. Korean Inst. Met. Mater., 35(2), 223 (1997).
26 H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Microstructure and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process and Hot Pressing Methods", Korean J. Mater. Res., 7(1), 40 (1997).
27 J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-Power Light-Emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016).   DOI
28 V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, "Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes", IEEE Sens. J., 7(5), 650 (2007).   DOI
29 M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto, "Micro Thermoelectric Modules and Their Application to Wristwatches as an Energy Source", Proc. 18th International Conference on Thermoelectrics (ICT), Baltimore, USA, 301, IEEE (1999).
30 G. J. Snyder, "Small Thermoelectric Generators", Electrochem. Soc. Interface., Fall, 54 (2008).
31 S. H. Lee, H. Shen, and S. Han, "Flexible Thermoelectric Module Using Bi-Te and Sb-Te Thin Films for Temperature Sensors", J. Electron. Mater., 48(9), (2019).
32 Y. Du, J. Xu, B. Paul, and P. Eklund, "Flexible Thermoelectric Materials and Devices", Appl. Mater. Today., 12, 366 (2018).   DOI
33 D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness- Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018).   DOI
34 J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016).   DOI
35 S. Zhang, Z. Fan, X. Wang, Z. Zhang, and J. Ouyang, "Enhancement of the Thermoelectric Properties of PEDOT:PSS via One-Step Treatment with Cosolvents or Their Solutions of Organic Salts", J. Mater. Chem., A6, 7080 (2018).
36 R. Maeda, H. Kawakami, Y. Shinohara, I. Kanazawa, and M. Mitsuishi, "Thermoelectric Properties of PEDOT/PSS Films Prepared by a Gel-Film Formation Process", Mater. Lett., 251, 169 (2019).   DOI
37 D. Park, and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-Variant Stretchable Substrates for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 111 (2018).   DOI