DOI QR코드

DOI QR Code

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method

PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성

  • Han, Kee Sun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 한기선 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2019.12.06
  • Accepted : 2019.12.26
  • Published : 2019.12.30

Abstract

A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.

18쌍의 Bi2Te3계 p-n 가압소결체 열전레그들로 구성되어 있으며 상하부 기판이 없고 내부는 polydimethylsiloxane (PDMS)로 충진되어 있는 유연열전모듈을 형성하고, 이의 발전특성과 굽힘특성을 분석하였다. 유연열전모듈을 팔목에 부착하였을 때 서있는 정적인 상태에서는 2.23 mV의 open circuit 전압과 1.69 ㎼의 최대출력전력이 얻어졌으며, 걸어가는 동적인 상태에서는 3.32 mV의 open circuit 전압과 3.41 ㎼의 최대출력전력이 얻어졌다. 유연열전모듈에 굽힘곡률반경 25 mm로 30,000회까지 반복굽힘 싸이클을 인가하여도 저항변화율이 1% 미만으로 유지되었다.

Keywords

References

  1. J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016). https://doi.org/10.1007/s11664-016-4485-6
  2. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
  3. T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A., 145-146, 423 (2008). https://doi.org/10.1016/j.sna.2007.11.032
  4. W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013). https://doi.org/10.1155/2013/232438
  5. W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A., 132, 337 (2006). https://doi.org/10.1016/j.sna.2006.04.024
  6. A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
  7. T. S. Oh, "Fabrication Process and Power Generation Characteristics of Thermoelectric Thin Film Devices for Micro Energy Harvesting", J. Microelectron. Packag. Soc., 25(3), 67 (2018). https://doi.org/10.6117/KMEPS.2018.25.3.067
  8. W. J. Kim, and T. S. Oh, "Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters", J. Microelectron. Packag. Soc., 25(4), 67 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.067
  9. K. J. Shin, and T. S. Oh, "Micro-Power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-Chip Bonding", J. Electron. Mater., 44(6), 2026 (2015). https://doi.org/10.1007/s11664-015-3647-2
  10. K. J. Shin, and T. S. Oh, "Thermoelectric Power-Generation Characteristics of a Thin-Film Device Processed by the Flip-Chip Bonding of $Bi_2Te_3$ and $Sb_2Te_3$ Thin-Film Legs Using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015). https://doi.org/10.2320/matertrans.M2015236
  11. V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, "Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes", IEEE Sens. J., 7(5), 650 (2007). https://doi.org/10.1109/JSEN.2007.894917
  12. M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto, "Micro Thermoelectric Modules and Their Application to Wristwatches as an Energy Source", Proc. 18th International Conference on Thermoelectrics (ICT), Baltimore, USA, 301, IEEE (1999).
  13. G. J. Snyder, "Small Thermoelectric Generators", Electrochem. Soc. Interface., Fall, 54 (2008).
  14. J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-Power Light-Emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016). https://doi.org/10.1007/s11664-016-4485-6
  15. S. H. Lee, H. Shen, and S. Han, "Flexible Thermoelectric Module Using Bi-Te and Sb-Te Thin Films for Temperature Sensors", J. Electron. Mater., 48(9), (2019).
  16. Y. Du, J. Xu, B. Paul, and P. Eklund, "Flexible Thermoelectric Materials and Devices", Appl. Mater. Today., 12, 366 (2018). https://doi.org/10.1016/j.apmt.2018.07.004
  17. S. Zhang, Z. Fan, X. Wang, Z. Zhang, and J. Ouyang, "Enhancement of the Thermoelectric Properties of PEDOT:PSS via One-Step Treatment with Cosolvents or Their Solutions of Organic Salts", J. Mater. Chem., A6, 7080 (2018).
  18. R. Maeda, H. Kawakami, Y. Shinohara, I. Kanazawa, and M. Mitsuishi, "Thermoelectric Properties of PEDOT/PSS Films Prepared by a Gel-Film Formation Process", Mater. Lett., 251, 169 (2019). https://doi.org/10.1016/j.matlet.2019.05.005
  19. D. Park, and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-Variant Stretchable Substrates for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 111 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.111
  20. D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness- Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.155
  21. Science Today, YTN Science Inc. Oct. (2015) from https://science.ytn.co.kr/program/program_view.php?s_mcd=0082&s_hcd=&key=201510201612132845&page=1970
  22. J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the p-Type $(Bi_{0.2}Sb_{0.8})_2Te_3$ with Variation of the Hot-Pressing Temperature", J. Microelectron. Packag. Soc., 18(4), 33 (2011). https://doi.org/10.6117/KMEPS.2011.18.4.033
  23. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects", Energy Environ. Sci., 2, 466 (2009). https://doi.org/10.1039/b822664b
  24. D. H. Park, M. Y. Kim, and T. S. Oh, "Thermoelectric Energyconversion Characteristics of the n-type $Bi_2(Te,Se)_3$ Nanocomposites Processed with Carbon Nanotube Dispersion", Current Appl. Phys., 11, S41 (2011). https://doi.org/10.1016/j.cap.2011.07.007
  25. D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-Type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  26. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. -P. Fleurial, and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
  27. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  28. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites", Appl. Phys. Lett., 86, 62111 (2005). https://doi.org/10.1063/1.1863440
  29. T. S. Oh, D. B. Hyun, and N. V. Kolomoets, "Thermoelectric Properties of the Hot-Pressed $(Bi,Sb)_2(T3,Se)_3$ Alloys", Scripta Meter., 42, 849 (2000). https://doi.org/10.1016/S1359-6462(00)00302-X
  30. H. J. Kim, H. C. Kim, D. B. Hyun, and T. S. Oh, "Thermoelectric Properties of p-Type $(Bi,Sb)_2Te_3$ Alloys Fabricated by the Hot Pressing Method", Met. Mater., 4(1), 75 (1998). https://doi.org/10.1007/BF03026068
  31. B. Y. Jung, T. S. Oh, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Prepared by Mechanical Allying and Hot Pressing", J. Korean Phys. Soc., 31(1), 219 (1997).
  32. H. C. Kim, B. Y. Jung, D. B. Hyun, and T. S. Oh, "Mechanical Alloying Process and Thermoelectric Properties of p-Type $(Bi_{1-x}Sb_x)_2Te_3$", J. Korean Inst. Met. Mater., 36(3), 416 (1998).
  33. B. Y. Jung, T. S. Oh, S. E. Nam, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of p-Type $(Bi_{0.25}Sb_{0.75})_2Te_3$ Fabricated by Mechanical Allying Process", J. Korean Inst. Met. Mater., 35(1), 153 (1997).
  34. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Alloys Fabricated by Hot-Pressing Method", J. Mater. Sci., 36, 1285 (2001). https://doi.org/10.1023/A:1004862700211
  35. H. J. Kim, T. S. Oh, and D. B. Hyun, "Thermoelectric Properties of the Hot-Pressed $Bi_2(Te_{1-x}Se_x)_3$ Alloys with the $Bi_2Se_3$ Content", Korean J. Mater. Res., 8(5), 408 (1998).
  36. H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Powder Characteristics and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process", J. Korean Inst. Met. Mater., 35(2), 223 (1997).
  37. H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Microstructure and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process and Hot Pressing Methods", Korean J. Mater. Res., 7(1), 40 (1997).