• Title/Summary/Keyword: V-Zn oxide materials

Search Result 151, Processing Time 0.034 seconds

The Electrical Characteristics of Varistor. (바리스터의 전기적 특성)

  • Hong, Kyung-Jin;Jang, Dong-Hwan;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-56
    • /
    • 2001
  • The Breakdown electric field of ZnO semiconductor devices in voltage-current characteristics was increased by increasing of additive materials. The specimen that has not additive materials was not formed spinel structure. The critical voltage that has not spinel structure was 235[V]. When the additive materials has 0.5 and 2[mol%], the Breakdown electric field was 840 and 758[V] in each additive materials. The Breakdown electric field of varistors as a factor of voltage and current was increased by addition of oxide antimony. The varistors that has oxide antimony was linearly increased in low electric field.

  • PDF

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Thermal and Mechanical Properties of EPDM and CR Compounds with Various Fillers and Its Contents for V-rib Belt (V-rib 벨트용 EPDM과 CR의 고온 내구성과 기계적 물성에 미치는 충전제의 영향)

  • Seo, Kwan-Ho;Hwang, Byung-Kook;Hong, Ki-Heon;Park, Hae-Youn;Jeon, Il-Ryeon
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.299-307
    • /
    • 2009
  • The effects of reinforcing materials on durability and mechanical properties of V-rib belt were investigated. Cotton fiber and ZnO were used as a filler for CR, and cotton and aramid fiber were used for EPDM rubber compounds. These materials were prepared as a specimen and V-rib belt for heat resistant and mechanical test. High contents of ZnO give improved wear resistance, and higher contents of cotton fiber showed higher durability in high rotation speed but lower wear resistance for CR rubber compounds. Using the aramid and cotton fiber together in EPDM rubber compounds, thermal and wear resistance were improved simultaneously. The material containing EPDM matrix showed better durability and wear resistance than those of containing CR matrix comparing in the same cotton fiber contents.

Optical Properties of ZnO Soccer Ball Structures by Using Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.248-248
    • /
    • 2011
  • ZnO was grown on a Au-catalyzed Si(100) substrate by using a simple vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. The ZnO grown at 800$^{\circ}C$ had a soccer ball structure with diameters of <500 nm. The ZnO soccer ball structure was, for the first time, observed in this work. The optical properties of the ZnO soccer balls were investigated by photoluminescence (PL). In the room-temperature (RT) PL of the ZnO soccer balls, a strong near-band-edge emission (NBE) and a weak deep-level emission were observed at 3.25 and 2.47 eV (green emission), respectively. The weak deep-level emission (DLE) at around 2.47 eV (green emission) is caused by impurities and structural defects. The FWHM of the NBE peak from the ZnO soccer balls was 110 meV. In addition, the PL intensity ratio of the NBE to DLE was about 4. The temperature-dependent PL was also carried out to investigate the mechanism governing the quenching behavior of the PL spectra.

  • PDF

Fabrication of ZnO Nanorod-based Electrochemical Luminescence Cells and Fundamental Luminescence Properties (산화아연 나노로드 전극을 이용한 전기화학발광 셀의 제작 및 발광특성 고찰)

  • Oh, Hyung-Suk;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.76-79
    • /
    • 2014
  • We report Zinc oxide (ZnO) nanorods synthesis and electrochemical luminescence (ECL) cell fabrication. The ECL cell was fabricated using the electrode of ZnO nanorods and Ru(II) complex ($Ru(bpy)_3{^{2+}}$) as a luminescence materials. The fabricated ECL cell is composed of F-doped $SnO_2$ (FTO) glass/ Ru(II)/ZnO nanorods/FTO glass. The highest intensity of the emitting light was obtained at the wavelength of ~620 nm which corresponds to dark-orange color. At a bias voltage of 3V, the measured ECL efficiencies were 5 $cd/m^2$ for cell without ZnO nanorod, 145 $cd/m^2$ for ZnO nanorods-$5{\mu}m$, 208 $cd/m^2$ for ZnO nanorods-$8{\mu}m$ and 275 $cd/m^2$ for ZnO nanorods-$10{\mu}m$, respectively. At a bias voltage of 3.5V, the use of ZnO nanorods increases ECL intensities by about 3 times compared to the typical ECL cell without the use of ZnO nanorods.

Electrical Characteristics of Solution Processed In-Ga-ZnO Thin Film Transistors (IGZO TFTs) with Various Ratio of Materials

  • Lee, Na-Yeong;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.2-293.2
    • /
    • 2016
  • The In this paper, we have fabricated the solution processed In-Ga-ZnO thin film transistors (IGZO TFTs) by varying indium and gallium ratio. The indium ratio of IGZO TFTs was changed from 1 to 5 at fixed gallium and zinc oxide atomic percent of 1:1 and gallium ratio was varied from 1 to 5 at fixed indium and zinc oxide atomic percent of 1:1. When the indium ratio was increased at fixed gallium and zinc oxide ratio of 1:1, threshold voltage was negatively shifted from 1.03 to -6.18 V and also mobility was increased from 0.018 to $0.076cm2/V{\cdot}sec$. It means that the number of carriers in IGZO TFTs were increased due to great formation of the oxygen vacancies which generate electrons. In contrast, when the gallium ratio was increased in IGZO TFTs with indium and zinc oxide ration of 1:1, the on/off current ratio was increased from $1.88{\times}104$ to $2.22{\times}105$. It is because gallium have stronger chemical bonds with oxygen than that with the zinc and indium ions that lead to the decreased in electron concentration.

  • PDF

Effect of Si-oxides on the breakdown properties of ZnO varistor (Si-oxides가 ZnO varistor의 항복특성에 미치는 영향)

  • Kim, Jong-Moon;Jin, Hee-Chang;Mah, Jae-Pyung;Paek, Su-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.556-560
    • /
    • 1987
  • To enhance the breakdown properties of low voltage-oriented ZnO varistor, the samples were fabricated with the amounts of si-oxides and the sintering conditions. And then, to lower the breakdown voltage the $TiO_2$-added samples were fabricated. We investigated the nonlinear exponent, the nonlinear resistance and the V-I characteristics of samples. And we discussed with microstructures by use of SEM and the position of Si by EDS. Si-oxides, especially, largely enhanced the nonlinear exponent. In this case optimum sintering condition was $1200-1250^{\circ}C$-1hr and $TiO_2$ addition lowered the breakdown voltage.

  • PDF

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.308-311
    • /
    • 2015
  • V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were sintered at a temperature range as low as 875~950℃. The voltage clamping characteristics of V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were investigated at a pulse current range of 1~50 A. The sintering temperature had a significant effect on clamp voltage ratio, which exhibits surge protection capabilities. The varistor ceramics sintered at 875℃ exhibited the best clamping characteristics, in which the clamp voltage ratio was 2.69 at a pulse current of 50 A. The varistor ceramics sintered at 900℃ exhibited the highest electrical stability, where = 3,824 V/cm (initial 3,909 V/cm), and E1 mA/cm2 = 27 (initial 39) after application of a pulse current of 100 A.

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.