Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.6.308

Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5 Codoped Zinc Oxide Varistors  

Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.6, 2015 , pp. 308-311 More about this Journal
Abstract
V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were sintered at a temperature range as low as 875~950℃. The voltage clamping characteristics of V2O5/Mn3O4/Nb2O5 codoped zinc oxide varistor ceramics were investigated at a pulse current range of 1~50 A. The sintering temperature had a significant effect on clamp voltage ratio, which exhibits surge protection capabilities. The varistor ceramics sintered at 875℃ exhibited the best clamping characteristics, in which the clamp voltage ratio was 2.69 at a pulse current of 50 A. The varistor ceramics sintered at 900℃ exhibited the highest electrical stability, where = 3,824 V/cm (initial 3,909 V/cm), and E1 mA/cm2 = 27 (initial 39) after application of a pulse current of 100 A.
Keywords
Zinc oxide; Sintering; Clamping characteristics; $ZnO-V_2O_5$ based varistors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. H. Hng and K. M. Knowles, J. Am. Ceram. Soc., 83, 2455 (2000). [DOI: http://dx.doi.org/10.1111/j.1151-2916.2000.tb01576.x]
2 C. T. Kuo, C. S. Chen, and I. N. Lin, J. Am. Ceram. Soc., 81, 2942 (1998). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02717.x]
3 J. K. Tsai and T. B.Wu, Mater. Lett., 26, 199 (1996). [DOI: http://dx.doi.org/10.1016/0167-577X(95)00217-0]   DOI
4 J. K. Tsai and T. B.Wu, J. Appl. Phys., 76, 4817 (2994). [DOI: http://dx.doi.org/10.1063/1.357254]
5 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x]   DOI
6 L. M. Levinson and H. R. Pilipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
7 J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55, 109 (1972). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x]   DOI
8 C. W. Nahm, Mater. Sci. Semicon. Process., 16, 1308 (2013). [DOI: http://dx.doi.org/10.1016/j.mssp.2013.04.003]   DOI
9 C. W. Nahm, J. Am. Ceram. Soc., 94, 2269 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04626.x]   DOI
10 C. W. Nahm, J. Am. Ceram. Soc., 94, 1305 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2011.04420.x]   DOI
11 C. W. Nahm, J. Mater. Sci.: Mater. Electron., 22, 1010 (2011). [DOI: http://dx.doi.org/10.1007/s10854-010-0251-3]   DOI
12 C. W. Nahm, Ceram. Int., 36, 1109 (2010). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.12.002]   DOI
13 C. W. Nahm, Ceram. Int., 35, 3435 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.06.004]   DOI
14 C. W. Nahm, Ceram. Int., 35, 2679 (2009). [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.03.011]   DOI
15 H. H. Hng and P. L. Chan, Ceram. Int., 30, 1647 (2004). [DOI: http://dx.doi.org/10.1016/j.ceramint.2003.12.162]   DOI
16 H. H. Hng and L. Halim, Mater. Lett., 57, 1411 (2003). [DOI: http://dx.doi.org/10.1016/S0167-577X(02)00999-0]   DOI