Thermal and Mechanical Properties of EPDM and CR Compounds with Various Fillers and Its Contents for V-rib Belt

V-rib 벨트용 EPDM과 CR의 고온 내구성과 기계적 물성에 미치는 충전제의 영향

  • Seo, Kwan-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Hwang, Byung-Kook (Department of Polymer Science, Kyungpook National University) ;
  • Hong, Ki-Heon (Department of Ophthalmic Optics, Gimcheon College) ;
  • Park, Hae-Youn (Department of Polymer Science, Kyungpook National University) ;
  • Jeon, Il-Ryeon (School of Fire & Disaster Prevention, Kyungil University)
  • Published : 2009.09.30

Abstract

The effects of reinforcing materials on durability and mechanical properties of V-rib belt were investigated. Cotton fiber and ZnO were used as a filler for CR, and cotton and aramid fiber were used for EPDM rubber compounds. These materials were prepared as a specimen and V-rib belt for heat resistant and mechanical test. High contents of ZnO give improved wear resistance, and higher contents of cotton fiber showed higher durability in high rotation speed but lower wear resistance for CR rubber compounds. Using the aramid and cotton fiber together in EPDM rubber compounds, thermal and wear resistance were improved simultaneously. The material containing EPDM matrix showed better durability and wear resistance than those of containing CR matrix comparing in the same cotton fiber contents.

본 연구는 자동차 엔진의 구동을 각종 부대 장치로 전달하는데 사용되는 V-rib 벨트 재료의 내열성 및 내마모성을 향상시키기 위한 연구이다. 이를 위하여 고무 매트릭스는 EPDM과 CR, 그리고 충전제로 ZnO, 면 및 아라미드 섬유의 함량을 달리한 시편과 v-벨트를 만들어 내열성과 내마모성 그리고 기계적 성질을 조사하였다. CR 배합계에서 ZnO의 함량이 증가함에 따라 내마모성이 증가하였다. 또한 면섬유의 함량이 증가함에 따라 벨트상태에서 견딜 수 있는 구동시간은 증가하지만 내마모성은 감소하는 결과를 보였다. EPDM 배합계에서 면섬유의 충전한계는 30 phr정도였다. 또한 아라미드와 면섬유를 혼합 사용한 결과 구동시간과 내마모성을 동시에 증가시킬 수 있었으며, 그 단섬유의 최적 조성은 아라미드섬유/면섬유 비율이 1/5인 것으로 조사되었다. 동일한 면섬유 함량에서 EPDM 배합계 가 CR 배합계보다 우수한 물성을 보였다.

Keywords

References

  1. W. D. Erickson, 'Belt Selection and Application for Engineers', p. 197, Marcel Dekker, INC., 1987
  2. Z. T. V. Meltzer and R. Vilcu, 'Thermal Properties of EPDM/NR Blends', Polymer Degradation and Stability, 70, 341 (2000) https://doi.org/10.1016/S0141-3910(00)00115-4
  3. W. Cooper, 'Synthetic Elastomers in Encyclopedia of Polymer Science and Technology', vol. 5, p. 406, John Wiley & Sons, Inc., 1996
  4. 靑木一信, '클로로프렌의 각종 가황계와 가공안정성', 29, 335 (1994)
  5. E. K. Easterbrook and E. D. Allen, 'Ethylene-Propylene Rubber in Rubber Technology', ed. by M. Morton, p. 375, Van Nostrand Reinhold Company Inc., New York, 1987
  6. G. E. O'Connor and M. A. Fath, 'Thermoplastic Elastomers. Part I. Can TPEs Compete against Thermoset Rubbers?', Rubber World, 185, 25 (1981)
  7. C. Y. Park, 'Cure Characterics, Mechanical Properties and Ozone Resistance of EPDM/SBR Blend Vulcanizates', Elstomer, 43, 104 (2008)
  8. H. Huang, J. Yang, X. Liu, and Y. Zhang, 'Dynamically Vulcanized Ethylene Propylene Diene Terpolymer/Nylon Thermoplastic Elastomers', European Polymer Journal, 38, 857 (2002) https://doi.org/10.1016/S0014-3057(01)00270-1
  9. A. Basfar, M. Abdel-Aziz, and S. Mofti, 'Stabilization of $\gamma$ -radiation Vulcanized EPDM Rubber against Accelerated Aging', Polymer Degradation and Stability, 66, 191 (1999) https://doi.org/10.1016/S0141-3910(99)00065-8
  10. A. M. Yocom, 'Cork-containing Composite Sheet Material', U. S. 2,584,959 (1952)
  11. J. J. Leo and A. M Johansson, U. S. Pat., 263, 184 (1981)
  12. M. R. Piggott., 'Load Bearing fiber Composites', p. 62, Pergamon Oxford, London, 1985
  13. C. Ryu, C. K. Hong, C. W. Moon, and S. Kang, 'Effects of Particle Size and Structure of Fillers on the Friction and Wear Behavior of Filled Elastomer', Elastomer, 41, 194 (2006)
  14. T. Eccersley, 'Review of Short-Fiber Reinforced Rubber Composite', Rubbercon 81, Int'l. Rubber Conf. 2 G7 (1981)
  15. 김병규, 박찬영, 신귀숙, '단섬유강화고무', Elastomer, 26, 246 (1991)
  16. 손태원, '보강소재', Polymer Science and Technology, 6, 470 (1995)
  17. H. M. Kim and C. S. Lee, 'A Study on Noise Resistance and Physical Properties of NBR Rubber Materials Containing Oleamide and Aramid Chip', Elastomer, 41, 79 (2006)
  18. 가황고무 물리시험 방법 KS B pp.M6518 (1996)
  19. Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomers Tension ASTM D 412 (2006)
  20. Standard Test Method for Rubber Property Durometer Hardness ASTM D 2240 (2005)
  21. Standard Test Method for Rubber-Deterioration in an Air Oven ASTM D 573 (2004)
  22. Testing of rubber and elastomers-Determination of abrasion resistance DIN 53516 (1987)
  23. Automotive V-Ribbed Belts JASO E 109 (1984)
  24. Gates Micro-V belt test standard MV-56
  25. Gates Micro-V belt test standard MV-60
  26. 김병규, 박찬영, 신귀숙, '단섬유강화고무', 고무학회지, 26, 246 (1991)
  27. A. P. Fold, Rubber Chem. Technol., 49, 379 (1976) https://doi.org/10.5254/1.3534973
  28. A. R. Sanadi and M. R. Piggott, 'Interfacial Effects in Carbon-epoxies : Part 1 Strength and Modulus with Short Aligned Fibres', J. Mater. Sci., 20, 421 (1985) https://doi.org/10.1007/BF01026510
  29. R. K. Mittal and V. B. Gupta, 'The Strength of the Fiber-polymer Interface in Short Glass Fiber-reinforced Polypropylene', J. Mater. Sci., 17, 3179 (1982) https://doi.org/10.1007/BF01203481
  30. M. R. Piggot., 'Expressions Governing Stress-strain Curves in Short Fibre Reinforced Polymers', J. Mater. Sci., 13, 1709 (1978) https://doi.org/10.1007/BF00548734
  31. M. R. Piggott., 'Load Bearing fiber Composites', p. 62, Pergamon Oxford, London, 1985