DOI QR코드

DOI QR Code

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong (Department of Chemical & Environmental Engineering, University of California) ;
  • Park, Seong-Ju (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • Published : 2009.08.27

Abstract

This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Keywords

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Cho, Appl. Phys. Lett., 72(16), 2014 (1998) https://doi.org/10.1063/1.121250
  2. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64(13), 1687 (1994) https://doi.org/10.1063/1.111832
  3. S. Nakamura, G. Fasol, The Blue Laser Diode, Springer, Berlin, (1997)
  4. J. -K. Ho, C. -S. Jong, C. -N. Huang, C. -Y. Chen, C. C. Chiu and K.-K. Shih, Appl. Phys. Lett., 74(9), 1275 (1999) https://doi.org/10.1063/1.123546
  5. J. -K. Ho, C. -S. Jong, C. C. Chiu, C. -N. Huang, K. -K. Shih, L. -C. Chen, F. -R. Chen and J. -J. Kai, J., Appl. Phys., 86(8), 4491 (1999) https://doi.org/10.1063/1.371392
  6. R. -H. Horng, D. -S. Wuu, Y. -C. Lien and W. -H. Lan, Appl. Phys. Lett., 79(18), 2925 (2001) https://doi.org/10.1063/1.1415048
  7. T. Minami, T. Miyata and T. Yamamoto, Surf. Coat. Tech., 108(1), 583 (1998) https://doi.org/10.1016/S0257-8972(98)00592-1
  8. T. Minami, T. Kakumu and S. Takata, J. Vac. Sci. Technol. A, 14(3), 1704 (1996) https://doi.org/10.1116/1.580323
  9. D. -J. Kim, Y. -T. Moon, K. -M. Song and S. J. Park, Jpn. J. Appl. Phys. Part 1, 40(5A), 3085 (2001) https://doi.org/10.1143/JJAP.40.3085
  10. C. Huh, S. W. Kim, H. S. Kim, H. M. Kim, H. Hwang and S. J. Park, Appl. Phys. Lett., 78(12), 1766 (2001) https://doi.org/10.1063/1.1355990
  11. C. Huh, S. W. Kim, H. M. Kim, D. J. Kim and S. J. Park, Appl. Phys. Lett., 78(13), 1942 (2001) https://doi.org/10.1063/1.1358356
  12. J. -H. Lim, D. -K. Hwang, H. -S. Kim, J. -Y. Oh, J. -H. Yang, R. Navamathavan and S. J. Park, Appl. Phys. Lett., 85(25), 6191 (2004) https://doi.org/10.1063/1.1826231
  13. J. -H. Lim, D. -K. Hwang, H. -S. Kim, J. -Y. Oh, J. -H. Yang, R. Navamathavan and S. J. Park, J. Electrochem. Soc., 152(6), G491 (2005) https://doi.org/10.1149/1.1914758
  14. S. H. Lee, Y. M. Yu, T. H. Kim and S. -Y. Jeong, J. Kor. Phys. Soc., 51(2) S79 (2007) https://doi.org/10.3938/jkps.51.79