• Title/Summary/Keyword: V/f

Search Result 3,498, Processing Time 0.029 seconds

Control Mode Switching of Induction Machine Drives between Vector Control and V/f Control in Overmodulation Range

  • Nguyen, Thanh Hai;Van, Tan Luong;Lee, Dong-Choon;Park, Joo-Hong;Hwang, Joon-Hyeon
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.846-855
    • /
    • 2011
  • This paper proposes a control mode switching scheme between vector control and constant V/f control for induction machine (IM) drives for maximum torque utilization in a higher speed region. For the constant V/f scheme, a smooth transition method from the linear range of PWM up to the six-step mode is applied, by which the machine flux and torque can be kept constant in a high-speed range. Also, a careful consideration of the initial phase angle of the voltage in the transient state of the control mode change between the vector control and V/f schemes is described. The validity of the proposed strategy is verified by the experiment result for a 3-kW induction motor drives.

SOME NEW RESULTS ON POWER CORDIAL LABELING

  • C.M. BARASARA;Y.B. THAKKAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.615-631
    • /
    • 2023
  • A power cordial labeling of a graph G = (V (G), E(G)) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge e = uv is assigned the label 1 if f(u) = (f(v))n or f(v) = (f(u))n, For some n ∈ ℕ ∪ {0} and the label 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we investigate power cordial labeling for helm graph, flower graph, gear graph, fan graph and jewel graph as well as larger graphs obtained from star and bistar using graph operations.

POWER CORDIAL GRAPHS

  • C.M. BARASARA;Y.B. THAKKAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.445-456
    • /
    • 2024
  • A power cordial labeling of a graph G = (V (G), E(G)) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge e = uv is assigned the label 1 if f(u) = (f(v))n or f(v) = (f(u))n, for some n ∈ ℕ ∪ {0} {0} and the label 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we study power cordial labeling and investigate power cordial labeling for some standard graph families.

TOPOLOGICAL CONJUGACY OF DISJOINT FLOWS ON THE CIRCLE

  • Cieplinski, Krzysztof
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.333-346
    • /
    • 2002
  • Let $F={F^v:S^1->S^1,v\in\; V$ and $g={G^v:S^1->S^1,v\in\; V$ be disjoint flows defined on the unit circle $S^1$, that is such flows that each their element either is the identity mapping or has no fixed point ((V, +) is a 2-divisible nontrivial abelian group). The aim of this paper is to give a necessary and sufficient codition for topological conjugacy of disjoint flows i.e., the existence of a homeomorphism $\Gamma:S^1->S^1$ satisfying $$\Gamma\circ\ F^v=G^v\circ\Gamma,\; v\in\; V$$ Moreover, under some further restrictions, we determine all such homeomorphisms.

Some Characterizations of Catenary Rotation Surfaces

  • Kim, Dong-Soo;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.667-676
    • /
    • 2017
  • We study the positive $C^1$ function z = f(x, y) defined on the plane ${\mathbb{R}}^2$. For a rectangular domain $[a,b]{\times}[c,d]{\subset}{\mathbb{R}}^2$, we consider the volume V and the surface area S of the graph of z = f(x, y) over the domain. We also denote by (${\bar{x}}_V,\;{\bar{y}}_V,\;{\bar{z}}_V$) and (${\bar{x}}_S,\;{\bar{y}}_S,\;{\bar{z}}_S$) the geometric centroid of the volume under the graph of z = f(x, y) and the centroid of the graph itself defined on the rectangular domain, respectively. In this paper, first we show that among nonconstant $C^2$ functions with isolated singularities, S = kV, $k{\in}{\mathbb{R}}$ characterizes the family of catenary rotation surfaces f(x, y) = k cosh(r/k), $r={\mid}(x,y){\mid}$. Next, we show that one of $({\bar{x}}_S,\;{\bar{y}}_S)=({\bar{x}}_V,\;{\bar{y}}_V)$, $({\bar{x}}_S,\;{\bar{z}}_S)=({\bar{x}}_V,\;2{\bar{z}}_V)$ and $({\bar{y}}_S,\;{\bar{z}}_S)=({\bar{y}}_V,\;2{\bar{z}}_V)$ characterizes the family of catenary rotation surfaces among nonconstant $C^2$ functions with isolated singularities.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

MINIMAL QUASI-F COVERS OF vX

  • Kim, ChangIl
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.221-229
    • /
    • 2013
  • We show that if X is a space such that ${\beta}QF(X)=QF({\beta}X)$ and each stable $Z(X)^{\sharp}$-ultrafilter has the countable intersection property, then there is a homeomorphism $h_X:vQF(X){\rightarrow}QF(vX)$ with $r_X={\Phi}_{vX}{\circ}h_X$. Moreover, if ${\beta}QF(X)=QF({\beta}X)$ and $vE(X)=E(vX)$ or $v{\Lambda}(X)={\Lambda}(vX)$, then $vQF(X)=QF(vX)$.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).

PAIR DIFFERENCE CORDIALITY OF CERTAIN SUBDIVISION GRAPHS

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Let G = (V, E) be a (p, q) graph. Define $$\begin{cases}\frac{p}{2},\:if\:p\:is\:even\\\frac{p-1}{2},\:if\:p\:is\:odd\end{cases}$$ and L = {±1, ±2, ±3, ···, ±ρ} called the set of labels. Consider a mapping f : V → L by assigning different labels in L to the different elements of V when p is even and different labels in L to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that |Δf1 - Δfc1| ≤ 1, where Δf1 and Δfc1 respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of subdivision of some graphs.

Ferromagnetism of thin films deposited from paramagnetic stainless steel targets by Facing Targets Sputtering

  • Matsushita, N.;Ono, N.;Naoe, M.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 1991.05a
    • /
    • pp.73-74
    • /
    • 1991
  • The films with ferromagnetic fine particles dispersed in nonmagnetic matrix, such as $Fe-Al_2O_3$ and Fe-Cu have been studied for use of magnetic recording medium, optically device and sensor. Their magnetic properties depend strongly on structural parameter such as size and volume fraction of ferromagnetic particles. Fe-Cr-Ni alloy sputtered films also have microstructure with ferromagnetic -- b.c.c phase and nonmagnetic f.c.c phase grains. Magnetic properties of these films depend strongly on such a unique structure. These are depend on the ratio in volume of ferromagnetic particles to nonmagnetic ones $V_F/V_N$, the saturation magnetization Ms increased with increase of $V_F/V_N$. The coercivity Hc of the as-deposited films took maximum value of about 200 Oe at adequate $V_F/V_N$ and then Ms and Squareness S were 500 emu/cc and 0.5, respectively.(omitted)

  • PDF