• Title/Summary/Keyword: Urine detection sensor

Search Result 13, Processing Time 0.02 seconds

Technical and Commercialization Status of Urine and Feces Disposal Systems (자동배설처리기 기술 및 상품화 현황)

  • Koh, E.J.;Park, S.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.169-175
    • /
    • 2015
  • Urine and/or feces disposal systems are expected to replace the diapers currently used for urine and feces disposal for the elderly with urinal and/or fecal incontinence. The are designed to detect the urine and/or feces, cleanse the excremental body organs with water transported from a cleansing water container in the main body, suction them into a fluid waste storage container for future disposal, and dry the area with hot air supplied also from the main body. These systems thus could relieve the chores of a caregiver and could also enhance the patient's hygiene. We reviewed in this paper the detection systems of urine and feces, the main components of the urine and feces disposal systems, and tried to classify the systems currently available in the market.

  • PDF

A Study on the Development of Ultrasonic Urine Volume Detection Sensor and the Correlation between Urine Volume and Bladder Interwall Distance (초음파 뇨량검출 센서의 제작 및 방광 벽간거리와 뇨량과의 상관관계에 관한 연구)

  • Choi, H.H.;Lee, E.H.
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.256-267
    • /
    • 2000
  • In this paper, we studied the ultrasonic urine volume sensor of urinary alarm system for home use to detect the time of urination as a assistive methodology for the incontinence patients and the correlation between urine volume and bladder interwall distance by using developed sensor. The developed sensor was designed to minimize the measurement error by using ultrasound with 2.25 MHz center frequency which provides higher resolution as well as longer penetration depth. To verify usefulness of the developed sensor, we performed a preliminary experiment of estimating bladder volume from the measured distance between interior and posterior wall of bladder. In the preliminary experiment, bladder volume estimated from the result using a commercial ultrasonography system. The experimental results show there exists god correlation between the actual urine volume and the measured interwall distance of the bladder. In conclusion, the developed ultrasound bladder volume sensor can be applied to an urine alarm system which provides patient the exact time of urination, it will be contribute in health care and welfare society.

  • PDF

Development of an Portable Urine Glucose Monitoring System (휴대용 뇨당 측정 시스템의 개발)

  • 박호동;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.397-403
    • /
    • 2002
  • Urine glucose monitoring system is a self-monitoring system that display the glucose level by non-invasive measurement method. In this paper, We developed a noninvasive urine glucose monitoring system that improved defects of urine glucose measurement with a colorimeter method and invasive blood glucose measurement method. This system consist of bio-chemical sensor for urine glucose measurements, signal detecting part, digital and signal analysis part, display part and power supplying part. The developed bio-chemical sensor for the measurement of urine glucose has good reproducibility, convenience of handing and can be mass-produced with cheap price. To evaluate the performance of the developed system, We performed the evaluation of confidence about the detection of glucose level by a comparison between a standard instrument in measuring glucose level and the developed system using standard glucose solutions mixed with urine. Standard error was 2.85282 from the evaluation of confidence based on regression analysis. Also, In analysis of S.D(standard deviation) and C.V(coefficient of validation) that are important parameters to evaluate system using bio-chemical sensor, S.D was 10% which falls under clinically valid value, 15%, and C.V was under 5%. Consequently from the above results, compared to blood glucose measurement, the system performance is satisfactory.

Diagnostic ex vivo assay of glucose in live cell using voltammetry

  • Ly, Suw Young;Leea, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1379-1385
    • /
    • 2018
  • The hand held voltammetry systems searched diabetic assay using glucose sensor of fluorine nafion doped carbon nanotube electrode (FCNE). An inexpensive graphite carbon pencil was used as an Ag/AgCl reference and Pt counter electrode. Upon combining and using three electrode systems, optimum square wave (SW) stripping results were attained to 1.0-9.0 ug/L with 8 points. Statistic RSD precision was of 6.02 % with n=15 in 0.1 mg/L glucose. After a total of 200 second accumulation times, analytical detection limit of 0.8 ug/L was obtained. This developed technique was applied to urine samples from diabetic patients urine for fluid analysis, it was determined that the sensor can be used with a diagnostics in the ex vivo of live cells and non treated biological fluid.

Comparison between bladder urine $O_{2}$ tension and mixed venous blood $O_{2}$ tension in human (방광뇨와 혼합정맥혈의 산소분압의 비교)

  • 이두연
    • Journal of Chest Surgery
    • /
    • v.19 no.4
    • /
    • pp.563-568
    • /
    • 1986
  • Tissue 02 tension is an important guide in detection of the general condition in critical patients. The tissue 0, is more difficult to measure with 0, sensor in skeletal muscle and subcutaneous tissues to present. But it is much easier to measure 0, tension in bladder urine with Censini catheter in Foley catheter than in tissue. We have measured 0, tension in bladder urine, main pulmonary artery and radial artery in 16 patients in chest surgical department of Yonsei University. College of Medicine from September 26 to December 22, 1981. Six patients were male and ten patients were female. Their ages ranged from 8 to 43 years. The correlation equation between the simultaneously measured PuO2 and PvO2 was found to be Ypvo2=4.04 + 0.88 Xpuo2 [r=0.88, p<0.0001] in regression curve with computer [HP/3,000, Program: SPSS] in the Yonsei University. Measurement of 0, tension in bladder urine and MPA will be rather simple, rapid and reproducible method than that of the 0, tension in tissues. But the speed of 0, consumption in urine is fast and so the 0, tensions in bladder urine were measured as soon as possible after they were collected. They were no complications or morbidity during measurement of 0, tension in these procedures except spontaneous removal of radial arterial cannulas in 2 patients.

  • PDF

Low Power Diaper Urination Alarm Technology with Bluetooth v4.0 (블루투스 v4.0을 활용한 저(低)전력형 기저귀 배뇨 발생 알람 기술)

  • Paik, Jung Hoon
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, technologies applied to design urination detection device on diaper that issues an alarm signal to guardian within 10~20m are introduced. It features power saving that uses both low power bluetooth v4.0 chip and low-power program scheme that makes sensor and mirco-controller to be sleep mode while data is not receiving from sensor. Urination detection algorithm that utilizes the difference between previous sensing data and current values is used to improve the degree of the detection precision level. The device designed with the suggested technologies shows the performance that is 100ml of the minimum urine amount for detection, more than 90% of urination detection degree, and 100% of wireless communication success rate.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Advances in the Early Detection of Lung Cancer using Analysis of Volatile Organic Compounds: From Imaging to Sensors

  • Li, Wang;Liu, Hong-Ying;Jia, Zi-Ru;Qiao, Pan-Pan;Pi, Xi-Tian;Chen, Jun;Deng, Lin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4377-4384
    • /
    • 2014
  • According to the World Health Organization (WHO), 1.37 million people died of lung cancer all around the world in 2008, occupying the first place in all cancer-related deaths. However, this number might be decreased if patients were detected earlier and treated appropriately. Unfortunately, traditional imaging techniques are not sufficiently satisfactory for early detection of lung cancer because of limitations. As one alternative, breath volatile organic compounds (VOCs) may reflect the biochemical status of the body and provide clues to some diseases including lung cancer at early stage. Early detection of lung cancer based on breath analysis is becoming more and more valued because it is non-invasive, sensitive, inexpensive and simple. In this review article, we analyze the limitations of traditional imaging techniques in the early detection of lung cancer, illustrate possible mechanisms of the production of VOCs in cancerous cells, present evidence that supports the detection of such disease using breath analysis, and summarize the advances in the study of E-noses based on gas sensitive sensors. In conclusion, the analysis of breath VOCs is a better choice for the early detection of lung cancer compared to imaging techniques. We recommend a more comprehensive technique that integrates the analysis of VOCs and non-VOCs in breath. In addition, VOCs in urine may also be a trend in research on the early detection of lung cancer.