Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00206

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode  

Income, Kamolwich (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi)
Ratnarathorn, Nalin (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi)
Themsirimongkon, Suwaphid (Department of Chemistry, Faculty of Science, Chiang Mai University)
Dungchai, Wijitar (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 416-423 More about this Journal
Abstract
A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.
Keywords
Oxalic Acid; Platinum Nanoparticle; Carbon Black; Reduced Graphene Oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Hogkinson, "Oxalic acid in biology and medicine", New York: Academic press, 1977, pp. 104-158.
2 W. Xiaofeng, C. Yong, Y. Zheng, S. Hailiang, G. Shixing, L. Jun, and S. Wei, Ionics., 2015, 21(3), 877-884.   DOI
3 M. J. Chollier-Brym, F. Epron, E. Lamy-Pitara, and J. Barbier, J. Electroanal. Chem., 1999, 474(2), 147-154.   DOI
4 S. N. Pron'kin, O. A. Petrii, G. A. Tsirlina, and D. J. Schiffrin, J. Electroanal. Chem., 2000, 480(1-2), 112-119.   DOI
5 L. C. Rockombeny, J. P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, Electrochim. Acta, 2012, 66, 230-238.   DOI
6 H. J. Wang, M. Imura, Y. Nemoto, S. E. Park, and Y. Yamauchi, Chem. Asian J., 2012, 7(4), 802-808.   DOI
7 J. Y. Shin, Y. S. Kim, Y. Lee, J. H. Shim, C. Lee, and S. G. Lee, Chem. Asian J., 2011, 6(8), 2016-2021.   DOI
8 S. J. Guo, D. Wen, Y. M. Zhai, S. J. Dong, and E. K. Wang, ACS Nano, 2010, 4(7), 3959-3968.   DOI
9 A. Iwan, M. Malinowski, and G. Pasciak, Renew. Sustain. Energy Rev., 2015, 49, 954-967.   DOI
10 E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett., 2009, 9(6), 2255-2259.   DOI
11 N. Seselj, C. Engelbrekt, and J. Zhang, Sci. Bull., 2015, 60(9), 864-876.   DOI
12 M. Oyama, Anal. Sci., 2010, 26(1), 1-12.   DOI
13 E. Quesnel, F. Roux, F. Emieux, P. Faucherand, E. Kymakis, G. Volonakis, F.Giustino, B. Martin-Garia, I. Moreels, and S.A. Gursel, 2D Mater., 2015, 2(30204), 1-16.
14 A. Marinkas, F. Arena, J. Mitzel, G.M. Prinz, A. Heinzel, V. Peinecke, and H. Natter, Carbon, 2013, 58, 139-150.   DOI
15 S. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, L.V. Saraf, W.J. Liu, Y. Lin, and Y. Wang, Electrochem. Commun., 2011, 13(3), 258-261.   DOI
16 K. Income, N. Ratnarathorn, N. Khamchaiyo, C. Srisuvo, L. Ruckthong, and W. Dungchai, Int. J. Anal. Chem., 2019, 1-11.
17 C.S. Pundir, N.K. Kuchhal, and M.S. Thakur, Indian J. Biochem. Biophys., 1998, 35(2), 120-122.
18 L. Dandan, W. Yaoxian, and Z. Ganqing, Int. J. Electrochem. Sci., 2015, 10, 6794-6802.
19 M. Le, Z. Qiang, Z. Min, W. Lishi, and C. Faliang, J. Exp. Nanosci., 2016, 11(16), 1242-1252.   DOI
20 J. B. Raoof, F. Chekin, and V. Ehsani, Sens. Actuators B Chem., 2015, 207, 291-296.   DOI
21 C.S. Pundir, and M.S. Thaku, Clin. Chem., 1998, 44(6), 1364-1365.   DOI
22 D.L. Earnest, G. Johnson, H.E. Williams, and W.H. Admirand, Gastroenterol, 1974, 66(6), 1114-1122.   DOI
23 L. Yang, H. Jianshe, W. Dawei, H. Haoqing, and Y. Tianyan, Anal. Methods, 2010, 2(7), 855-859.   DOI
24 C. Fua, L.X. Wang, and Y.Z. Fang, Talanta, 1999, 50(5), 953-958.   DOI
25 D.R. Skotty, and T.A. Nieman, J. Chromatogr., 1995, 665(1), 27-36.   DOI
26 A.A. Ensafi, and A. Kazemzadeh, Fresenius J. Anal. Chem., 2000, 367(6), 590-592.   DOI
27 A. Mokhtari, M. Keyvanfard, and I. Emami, RSC Adv, 2015, 5(37), 29214-29221.   DOI
28 S. Peldszus, P.M. Huck, and S.A. Andrews, J. Chromatogr. A, 1998, 793(1), 198-203.   DOI
29 E.F. Perez, G.O. Neto, and L.T. Kubota, Sens. Actuators, B, 2001, 72(1), 80-85.   DOI
30 A.J. Bard, and L.R. Faulkner, "Fundamentals and Applications: Electrochemical Methods", Wiley, New York, 2001.
31 C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Palichta, and M.A. Hendrickson, J. Phys. Chem. C, 2009, 113(46), 20127-20134.   DOI
32 R.B. Keithley, P. Takmakov, E.S. Bucher, A.M. Belle, C.A. Owesson-White, J. Park, and R.M. Wightman, Anal. Chem., 2011, 83(9), 3563-3571.   DOI
33 Z. Yanqiong, Y. Changzhu, P. Wenhong, and Z. Jingdong, Food Chem., 2009, 114(4), 1523-1528.   DOI
34 Y.Y. Zhang, X.Y. Bai, X.M. Wang, K.K. Shiu, Y. Zhu, and H. Jiang, Anal. Chem., 2014, 86(19), 9459-9465.   DOI
35 Y.H. Fu, Y.P. Lin, T.S. Chen, and L.S. Wang, J. Electroanal. Chem., 2012, 687, 25-29.   DOI
36 T.A. Ivandini, T.N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471.   DOI
37 C.M. Welch, and R.G. Compton, Anal. Bioanal. Chem., 2006, 384(3), 601-619.   DOI
38 L.G. Shaidarova, and G.K. Budnikov, J. Anal. Chem., 2008, 63, 922-942.   DOI
39 G.W. Latimer, "Guidelines for Standard Method Performance Requirements: Official Methods of Analysis", 20th ed, United States: AOAC International, 2016, pp. 1-7.
40 X. Cao, X. Cai, Q. Feng, S. Jia, and N. Wang, Anal. Chim. Acta, 2012, 752, 101-105.   DOI
41 T. A. Ivandini, T. N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471.   DOI
42 T. C. Canevari, J. Arguello, M. S. P. Francisco, and Y. Gushikem, J. Electroanal. Chem., 2007, 609(2), 61-67.   DOI
43 F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, and J. Schoonman, Sensors, 2007, 7(4), 615-627.   DOI
44 S. Chutipongtanate, and V. Thongboonkerd, Anal. Biochem., 2010, 402(1), 110-112.   DOI
45 H. Ahmar, A. R. Fakhari, M. R. Nabid, S. J. T. Rezaei, and Y. Bide, Sens. Actuators B Chem., 2012, 171, 611-618.
46 A. R. Fakhari, B. Rafiee, H. Ahmar, and A. Bagheri, Anal. Methods, 2012, 4(10), 3314-3319.   DOI
47 S. Lei, Z. Faqiong, and Z. Baizhao, Electroanalysis, 2013, 25(2), 453-459.   DOI
48 C. Xiaomei, C. Zhixiong, H. Zhiyong, O. Munetaka, J. Yaqi, and C. Xi, Nanoscale, 2013, 5(13), 5779-5783.   DOI
49 T. Maiyalagan, P. Kannan, M. J. Niedziolka, and J. N. Jonsson, Anal. Chem., 2014, 86(15), 7849-7857.   DOI