• Title/Summary/Keyword: Urban Geographic Information System

Search Result 347, Processing Time 0.022 seconds

Development of an Application System for Efficient Management of Underground Water Supply Facility - Pilot Study in Chonju City - (상수도 지하시설물의 효율적 관리를 위한 응용시스템 개발 -전주시를 대상으로-)

  • 오권호;진철하;이근상;정승현;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.111-120
    • /
    • 2000
  • Water, waste, electric and gas facilities are urban based facilities that needed in our life and are often located in underground. Therefore, underground facilities are more difficult to manage efficiently than ground facilities. It is needed to carry out survey/probe into underground facilities and to build database in order to prevent city-misfortunes being occurred because of negligent management and in order to minimize budget-waste and a traffic jam according to repetition of road excavation constructions. Also, the development of application system is required to manage efficiently underground facility. Chonju city has launched underground water supply facility computerizing project as a part of National Geographic Information System project until December 1998 and executed survey/probe into 402.89 km water supply that is 80 mm up inside central town area 39.6 $km^2$. Also, chonju city built database into 537 km water supply that is 80 mm below based on water supply card without other survey/probe works. Also, existing work process each department is changed into GIS applied work process and underground water supply facility management system is developed by its work process basis. Water supply underground facility management system that is developed is composed of sub-system like base-map management, water supply inspect, water supply management and water supply inquiry, construction work management, administration management and map management. This research presents the procedure and method of underground water supply facility survey/probe and problem being occurred during survey/probe procedure and also show the functions of each sub-systems composing underground water supply facility management system.

  • PDF

Study on a Potentiality Analysis of Spatial Information in Urban Information System (도시정보체계의 공간정보 관련성 분석 연구)

  • 고광철;민경옥;김은형
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.261-267
    • /
    • 2003
  • 사회의 빠른 변화 속에서 지자체가 처리해야 할 정보의 양과 행정수요는 점점 증가하고 있으며, 의사결정과 기획을 위한 정보망과 정보시스템의 활용 계획을 수립하여야 하는 필요성은 더욱 증대되고 있다. 도시정보체계(UIS)의 구축은 의사결정의 효율적인 도구로 각광받아 대다수 지자체에서 활발히 진행되고 있다. 그러나 지자체 행정업무의 70~80%가 공간정보와 연계되어 있다는 막연한 기대감에서 출발한 현재의 도시정보체계(UIS) 구축사업은 단지공간정보 관리 중심의 시스템 개발에 치우치게 되었으며, 시설물 관리 분야에 대한 사업을 이미 수행한 지자체에서는 향후 어떠한 사업들을 전개해야 할 지에 대한 보다 다양하고 구체적인 비전을 가지지 못하고 있는 것이 우리의 현실이 아닌가라는 우려를 하게 되었다. 따라서 본 연구에서는 도시정보체계(UIS)의 새로운 비전 수립을 위해서는 막연하게 제시되고 있는 공간정보 관련성 분석을 보다 세분화하여 수행할 수 있는 공간정보 관련성 분석 모형을 제시함으로써 지자체 도시정보체계(UIS) 구축사업의 현재를 돌아보고 보다 발전적인 새로운 사업추진의 시각을 고찰해보고자 한다. 본 연구에서는 지자체 업무영역에 대한 보다 세분화된 공간정보의 관련성 분석을 위해 공간정보를 업무관점, 업무-정보산출물 관점, 데이터구축관점, 정보관점, 서비스관점으로 세분화여 하여 접근하였으며, 이를 종합하여 최종적인 공간정보 관련성 분석 모형을 구성하였다. 또한 지속적인 도시정보체계(UIS) 사업의 추진을 위해 시간적 개념의 변화 양상을 제시함으로써 GIS의 발달단계에 따라 어떠한 부분에 비중을 둔 사업의 추진이 이루어져야 하는지에 대해서 제시하고자 하였다. 본 연구를 통해 시설물 관리 중심의 도시기반정보화에 편중된 도시정보체계의 구축사업의 시각이 행정정보화, 생활정보화, 산업정보화 등 다양한 분야와 결합하여 보다 큰 시너지 효과와 사용자 중심의 서비스 개선을 창출할 수 있는 기반을 제공할 것을 기대해 본다.. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원의 개념에 대한 심도 깊은 연구와 최근 제기되고 있는 이론의 확대도 필요하다. 마지막으로 신뢰와 결속에 영향을 미치는 요소간의 개념적 분류, 차이의 검증, 영향력 등

  • PDF

Simulation Analysis of GPS Reception Environment of Unified Control Points Using GIS (GIS를 이용한 통합기준점의 GPS 수신환경 모의 분석)

  • Kim, Tae Woo;Yun, Hong Sik;Kim, Kwang Bae;Jung, Woon Chul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • National Geographic Information Institute has established a plan that preoccupies UCPs (Unified Control Points) at 2~3km intervals in urban areas by considering the distance between existing UCPs by satellite images and aerial photographs in 2015. In this study, we discussed the method of selecting the locations of optimal UCPs by simulating GPS reception environment in candidate sites for UCPs using GIS. For this purpose, we selected new candidate sites for installing UCPs using satellite images and aerial photographs, and analyzed the GPS reception environment by calculating the visibility distance from buildings around UCPs using GIS skyline analysis. The number of and the arrangement of visible satellites that are capable of GPS satellite reception from the viewpoint of sky view were showed by GIS skyline analysis. Quality evaluation results of GPS observation data were compared with average PDOP calculated from hourly PDOP and TEQC in two points of Sungkyunkwan University during 8 hours. As a result of GPS reception environment using GIS, if the PDOP increases, the data acquisition rate is lowed, and the multipath error and the cycle slip are increased. Thus, this study verified that the quality of GPS observation data can be secured by constructing three-dimensional spatial information and simulating PDOP when preoccupying multiple UCPs using GIS.

Distribution Characteristics of Exotic Turtles in Korean Wild - Based on Gangwon-do and Gyeongsangnam-do - (국내 야생에서 발견되는 외래거북류의 분포 특성 - 강원도와 경상남도 지역을 중심으로 -)

  • Koo, Kyo Soung;Kwon, Sera;Do, Min Seock;Kim, Suhwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.286-294
    • /
    • 2017
  • Development of transportation is rapidly reducing the barriers between countries, but this is causing the easier migration of species than the past. Typically, exotic species are imported for the purpose of food, leather, and pets. However, it has been introduced into the wild through artificially or naturally paths, and recently they are become a main cause of ecosystem disturbance. In this study, we investigated exotic turtle species introduced into the wild and analyzed their distribution characteristics. As a result of filed surveys, totally 4 genus 8 species 62 individuals of exotic turtles were found from 126 reservoirs in Gangwon-do and Gyeongsangnam-do, South Korea. In particular, Trachemys scripta elegans showed relatively high frequency than other turtle species and the natural reproduction of T. s. elegans was confirmed in some areas. On the other hand, the frequency of discovery of exotic turtles except T. s. elegans was relatively low, and the range of the areas was limited. Especially, exotic turtles except T. s. elegans were mainly found in public places such as reservoirs in the park. As a result of analyzing the distribution characteristics of exotic turtles using geographic information system, the turtles' distribution showed a high correlation with the artificial factor such as "urban". In this study, we identified the distribution characteristics of exotic turtles in the Korean wild, and these results will be important data for understanding status the and establishing effective management methods for exotic species.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Distributed GIS-Based Watershed Rainfall-Runoff Model Development and Its Calibration using Weather Radar (기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정)

  • Skahill, Brian E.;Choi, Woo-Hee;Kim, Min-Hwan;Kim, Sung-Kyun;Johnson, Lynn E.
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.285-300
    • /
    • 2003
  • An event-based, kinematic, infiltration-excess, and distributed rainfall-runoff model using weather radar and Geographic Information System(GIS) was developed to acknowledge and account lot the spatial variability and uncertainty of several parameters relevant to storm surface runoff and surface flow The developed model is compatible with raster GIS and spatially and temporally varied rainfall data. To calibrate the model, Monte Carlo simulation and a likelihood measure are utilized; allowing for a range of possible system responses from the calibrated model. Using rain gauge adjusted radar-rainfall estimates, the developed model was applied and evaluated to a limited number of historical events for the Ralston Creek and Goldsmith Gulch basins within the Denver Urban Drainage and Flood Control District (UDFCD) that contain mixed land use classifications. While based on a limited number of Monte Carlo simulations and considered flood events, Nash and Sutcliffe efficiency score ranges of -0.19∼0.95 / -0.75∼0.81 were obtained from the calibrated models for the Ralston Creek and Goldsmith Gulch basins, based on a comparison of observed and simulated hydrographs. For the Ralston Creek and Goldsmith Gulch basins, Nash and Sutcliffe efficiency scores of 0.88/0.10, 0.14/0.71, and 0.99/0.95 for runoff volume, peak discharge, and time to peak, respectively, were obtained from the model.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.