DOI QR코드

DOI QR Code

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS)

산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발

  • Lee, HoonTaek (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • WON, Myoung-Soo (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • YOON, Suk-Hee (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • JANG, Keun-Chang (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
  • 이훈택 (국립산림과학원 기후변화생태연구과) ;
  • 원명수 (국립산림과학원 기후변화생태연구과) ;
  • 윤석희 (국립산림과학원 기후변화생태연구과) ;
  • 장근창 (국립산림과학원 기후변화생태연구과)
  • Received : 2019.05.30
  • Accepted : 2019.09.10
  • Published : 2019.09.30

Abstract

Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

본 연구는 산불 위험 예측의 주요 인자인 10시간 사연료습도(10-h FMC)를 산악기상관측망 기상자료로 추정하는 방법을 마련하기 위해 수행되었다. 안성(도심지)과 홍릉 두 지점(숲 속, 숲 밖)의 자동기상관측소에서 기상인자와 10-h FMC를 측정하고 이를 이용해 10-h FMC 추정식을 도출했다. 도출한 추정식을 이용해 지난 6년간(2013~2018년) 산불발생 다발일의 10-h FMC를 분석하고 전국 10-h FMC 지도를 제작했다. 기상인자(기온, 풍속, 목재평형함수율, 강우량)와 10-h FMC의 회귀분석 결과 목재평형함수율이 가장 효율적으로 10-h FMC를 설명했음을 확인했다. 목재평형함수율을 이용해 도출한 10-h FMC 추정식은 모형 적합과 검증과정 모두에서 높은 적합도를 보였다. 각 연구지의 추정식을 서로 다른 연구지에 적용하면 모형의 적합도가 같은 연구지에서 만든 식을 적용했을 때보다 줄어들었지만 여전히 만족할 만한 결과를 보였다. 본 연구의 회귀식은 10-h FMC와 목재평형함수율 사이 강우 후 건조반응 차이와 식생 유무가 10-h FMC에 미치는 영향을 반영하지 못해 적합도가 줄어든 것으로 나타났다. 마지막으로 도출한 추정식을 사용한 공간분석을 통해 지난 6년간 산불발생 다발일의 산불 중 70% 이상이 10.5% 이하의 10-h FMC 조건에서 발생했음을 확인했다. 본 연구 결과는 산악기상관측망과 연계하여 전국 산지의 10-h FMC를 추정하는 데 사용할 수 있다. 10-h FMC는 산불 위험 예측 기초 연구 자료로 활용되어 재해 관련 국가 정책 결정에 기여할 것으로 판단된다.

Keywords

References

  1. Aguado, I., E. Chuvieco, R. Boren and H. Nieto. 2007. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire 16(4):390-397. https://doi.org/10.1071/WF06136
  2. Bradshaw, L.S., J.E. Deeming, R.E. Burgan and J.D. Cohen. 1984. The 1978 national fire-danger rating system: technical documentation. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT. General Technical Report INT-169.
  3. Carlson, J.D., L.S. Bradshaw, R.M. Nelson, R.R. Bensch and R. Jabrzemski. 2007. Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms. International Journal of Wildland Fire 16(2):204-216. https://doi.org/10.1071/WF06073
  4. Carlyle-Moses, D.E. and J.H. Gash. 2011. In Forest hydrology and biogeochemistry: Rainfall interception loss by forest canopies. Springer, New York, NY, USA. pp.407-423.
  5. Catchpole, E., W. Catchpole, N. Viney, W. McCaw and J. Marsden-Smedley. 2001. Estimating fuel response time and predicting fuel moisture content from field data. International Journal of Wildland Fire 10(2):215-222. https://doi.org/10.1071/WF01011
  6. Estes, B.L., E.E. Knapp. C.N. Skinner and F.C. Uzoh. 2012. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA. International Journal of Wildland Fire 21(4):428-435. https://doi.org/10.1071/WF11056
  7. Fiorucci, P., F. Gaetani and R. Minciardi. 2008. Development and application of a system for dynamic wildfire risk assessment in Italy. Environmental Modelling & Software 23(6):690-702. https://doi.org/10.1016/j.envsoft.2007.05.008
  8. Hailwood, A. and S. Horrobin. 1946. Absorption of water by polymers: analysis in terms of a simple model. Transactions of the Faraday Society 42:B084-B092. https://doi.org/10.1039/TF946420B084
  9. Jin, S. and P. Chen. 2012. Modelling drying processes of fuelbeds of Scots pine needles with initial moisture content above the fibre saturation point by two-phase models. International Journal of Wildland Fire 21(4):418-427. https://doi.org/10.1071/WF10119
  10. Matthews, S. 2006. A process-based model of fine fuel moisture. International Journal of Wildland Fire 15(2):155-168. https://doi.org/10.1071/WF05063
  11. Matthews, S. 2014. Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire 23(1):78-92. https://doi.org/10.1071/WF13005
  12. Matthews, S., J. Gould and L. McCaw. 2010. Simple models for predicting dead fuel moisture in eucalyptus forests. International Journal of Wildland Fire 19(4):459-467. https://doi.org/10.1071/WF09005
  13. Matthews, S., W.L. McCaw, J.E. Neal and R.H. Smith. 2006. Testing a process-based fine fuel moisture model in two forest types. Canadian Journal of Forest Research 37(1):23-35. https://doi.org/10.1139/x06-207
  14. Monteith, J. and M. Unsworth. 2013. Principles of environmental physics: plants, animals, and the atmosphere (4th ed.). Academic Press, Cambridge, MA, USA. 422pp.
  15. Montgomery, D.C., E.A. Peck and G.G. Vining. 2012. Introduction to linear regression analysis (5th ed.). John Wiley & Sons, West Sussex, UK. 672pp.
  16. Nelson Jr, R.M. 2000. Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research 30(7):1071-1087. https://doi.org/10.1139/x00-032
  17. Nolan, R.H., V. Resco de Dios, M.M. Boer, G. Caccamo, M.L. Goulden and R.A. Bradstock. 2016. Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote sensing of environment 174:100-108. https://doi.org/10.1016/j.rse.2015.12.010
  18. Pech, G. 1989. A model to predict the moisture content of reindeer lichen. Forest Science 35(4):1014-1028.
  19. R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  20. Ray, D., D. Nepstad and P. Brando. 2010. Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytologist 187(3):720-732. https://doi.org/10.1111/j.1469-8137.2010.03358.x
  21. Resco de Dios, V., A.W. Fellows, R.H. Nolan, M.M. Boer, R.A. Bradstock, F. Domingo and M.L. Goulden. 2015. A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology 203:64-73. https://doi.org/10.1016/j.agrformet.2015.01.002
  22. Ross, R.J. 2010. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory. General Technical Report FPL-GTR-190.
  23. Schunk, C., C. Wastl, M. Leuchner and A. Menzel. 2017. Fine fuel moisture for site-and species-specific fire danger assessment in comparison to fire danger indices. Agricultural and Forest Meteorology 234:31-47. https://doi.org/10.1016/j.agrformet.2016.12.007
  24. Thomas, P.A. and R.S. McAlpine. 2010. Fire in the forest. Cambridge University Press, Cambridge, UK. 238pp.
  25. van der Kamp, D., R. Moore and I. McKendry. 2017. A model for simulating the moisture content of standardized fuel sticks of various sizes. Agricultural and Forest Meteorology 236:123-134. https://doi.org/10.1016/j.agrformet.2017.01.013
  26. Won, M.S., K.C. Jang and S.H. Yoon. 2018. Development of the national integrated daily weather index(DWI) model to calculate forest fire danger rating in the spring and fall. Korean Journal of Agricultural and Forest Meteorology 20(4):348-356 https://doi.org/10.5532/KJAFM.2018.20.4.348
  27. Won, M.S., S.H. Yoon and K.C. Jang. 2016a. Developing Korean forest fire occurrence probability model reflecting climate change in the spring of 2000s. Korean Journal of Agricultural and Forest Meteorology 18(4):199-207 https://doi.org/10.5532/KJAFM.2016.18.4.199
  28. Won, M.S., S.H. Yoon, K.C. Jang and J.H. Lim. 2016b. Statistical modelling of forest fire danger rating based on meteorological, topographical and fuel factors in the Republic of Korea. AGU Fall Meeting Abstracts, AGU Fall Meeting, San Fransisco, CA, American Geophysical Union.
  29. Yeom, C.H., S.Y. Lee, H.S. Park and M.S. Won. 2016. A comparative analysis of fuel moisture contents variation by Pinus densiflora and Quercus variabilis stick for estimating moisture contents in forest fire surface fuel in the spring. Crisisonomy 12(12):59-67
  30. Yeom, C.H., M.S. Won, S.Y. Lee, S.H. Yoon and H.S. Park. 2018. A study on estimation of forest fire surface fuel moisture using electrical resistance. Journal of the Korean Society of Hazard Mitigation 18(4):175-181 https://doi.org/10.9798/kosham.2018.18.4.175
  31. Yoon, S.H., M.S. Won and K.C. Jang. 2016. A study on optimal site selection for automatic mountain meteorology observation system (AMOS): the case of Honam and Jeju areas. Korean Journal of Agricultural and Forest Meteorology 18(4):208-220 https://doi.org/10.5532/KJAFM.2016.18.4.208
  32. Yun, J.I., J.Y. Choi, and J.H. Ahn. 2001. Seasonal trend of elevation effect on daily air temperature in Korea. Korean Journal of Agricultural and Forest Meteorology 3(2):96-104
  33. Zhou, M. and H. Vacik. 2017. Comparisons of fuel stick moisture among forest cover types in eastern Austria. Austrian Journal of Forest Science 134(4):301-321.