• Title/Summary/Keyword: Uranium(Ⅵ)

Search Result 974, Processing Time 0.026 seconds

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook;Kim, Seung-Soo;Kim, Gye-Nam;Han, Gyu-Seong;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.840-846
    • /
    • 2016
  • Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

A Study on the Adsorption of Uranium(VI) Ion Using Ion Exchange Resin (이온 교환수지를 이용한 우라늄(VI) 이온의 흡착에 관한 연구)

  • 강영식;김준태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.114-122
    • /
    • 2000
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzine with 1%, 2%, 5% and 105-crosslink and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of uranium ion by this resins were studied. The resins were very stable in both acidic and basic media and have good resistance to heat at $300^{\circ}C$. The uranium ion are not adsorbed on the resins below pH 3.0, but the power of adsorption of it increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of uranium ion was two hours and adsorptive power decreased in proportion to crosslink size of the resins and order of dielectric constants of solvents used and the adsorption for uranium ion was bin the order of $OdienNtn-H_4$ > $OtnNen-H_4$ > $OtnNen-H_4$ > $OenNen-H_4$.

  • PDF

A Study on the Electrorefining of Uranium (우라늄의 건식전해정련 연구)

  • 강영호;황성찬;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.368-372
    • /
    • 2003
  • The present study focused on obtaining the optimum conditions for depositing pure uranium onto a solid cathode. As for the results of the experiments, it was conformed that when the concentration of $UCl_3$ in the molten salt(LiCl-KCl) is more than 2wt%, pure uranium could be deposited onto a solid cathode, In addition. the effect of both the current density and the U contents in the molten salt or th ratio of uranium to salt was examined and the uranium morphology was also investigated.

  • PDF

Recovery of Uranium in $LiF-BeF_2$ Molten Salt System by Electrowinning ($LiF-BeF_2$ 용융염계에서 전해제련에 의한 우라늄 회수)

  • 우문식;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.426-430
    • /
    • 2003
  • Fissionable uranium will be separated from long-lived nuclear materials in pyroprocess for transmutation. This study was measured decomposition voltage and deposition rate on cathode of uranium in $LiF-BeF_2$ molten salt by electrowinning. The result of experimental is that decomposition voltage of $UF_4$ and $LiF-BeF_2$ molten salt is -1.4 and -1.5 volt at $500^{\circ}C$ Deposition rate of uranium on cathode increases with increase of uranium concentration in molten salt.

  • PDF

Phonon-Assisted Electron Hopping Conduction in the Uranium Doped One-Dimensional Antiferromagnet Ca2CuO3

  • Thanh, Phung Quoc;Yu, Seong-Cho;Nhat, Hoang-Nam
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.132-135
    • /
    • 2008
  • The authors studied the conduction mechanism in an uranium doped low dimensional magnetic system $Ca_2CuO_3$. This system exhibits the S=1/2 quasi 1D antiferromagnetic chains of -Cu-O- with strong magnetic coupling, and demonstrates continuous semiconductor-like behavior with constant covalent insulator character. This paper identifies the conduction is due to thermally activated phonon-assisted electron hopping between dopant uranium sites. The parameter a, the characteristic for hopping probability, was determined to be 0.18 ${\AA}^{-1}$. This value manifests a relatively stronger hopping probability for $Ca_2CuO_3$ as compared with other uranium doped ceramics.

A study of energy absorption and exposure buildup factors in natural uranium

  • Salehi, Danial;Sardari, Dariush;Jozani, M.S.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Energy absorption and exposure buildup factor have been computed for natural uranium in the energy range of 0.05-15MeV up to penetration depth of 40 mfp. Five-parameter geometric progression (G-P) fitting method has been used to compute buildup factors of uranium. The variation of energy absorption and exposure buildup factors with, penetration depth and incident photon energies for the uranium has been studied. It has been concluded that the values of energy absorption and exposure buildup factors are very large at 0.15 MeV.

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

The role of organic matter associated with uranium mineralization (우라늄 광화작용(鑛化作用)에 기여(寄與)하는 유기물질(有機物質)의 역할(役割))

  • Oh, Chun-Hyuck;Kim, Jong-Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.319-329
    • /
    • 1988
  • As a factor which can help to understand the genesis of (mata) sedimentary and/or hydrothermal uranium depisits, an interpretation of the role of organic matter associated with uranium mineralization, was attempted with the literature published up to the end of 1986. Laboratory studies, in which diageneis and metamorphism are artificially simulated, can help to elucidate how uranium with particular organic materials are formed and destroyed. Similarly, research involving a variety of techniques is needed to characterize both the soluble organic extracts (bitumen) and the insoluble organic matter (kerogen), separated from uranium ores and associated rocks. In the presence of clay minerals and amorphous oxy-hydroxde minerals, an understanding of the role of organic matter must be prudent and may require the incorporation of multidisciplinary approach (mineralogy, inorganic geochemistry ...).

  • PDF

Thermal transport study in actinide oxides with point defects

  • Resnick, Alex;Mitchell, Katherine;Park, Jungkyu;Farfan, Eduardo B.;Yee, Tien
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1398-1405
    • /
    • 2019
  • We use a molecular dynamics simulation to explore thermal transport in oxide nuclear fuels with point defects. The effect of vacancy and substitutional defects on the thermal conductivity of plutonium dioxide and uranium dioxide is investigated. It is found that the thermal conductivities of these fuels are reduced significantly by the presence of small amount of vacancy defects; 0.1% oxygen vacancy reduces the thermal conductivity of plutonium dioxide by more than 10%. The missing of larger atoms has a more detrimental impact on the thermal conductivity of actinide oxides. In uranium dioxide, for example, 0.1% uranium vacancies decrease the thermal conductivity by 24.6% while the same concentration of oxygen vacancies decreases the thermal conductivity by 19.4%. However, uranium substitution has a minimal effect on the thermal conductivity; 1.0% uranium substitution decreases the thermal conductivity of plutonium dioxide only by 1.5%.

Fuzzy optimization for the removal of uranium from mine water using batch electrocoagulation: A case study

  • Choi, Angelo Earvin Sy;Futalan, Cybelle Concepcion Morales;Yee, Jurng-Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1471-1480
    • /
    • 2020
  • This research presents a case study on the remediation of a radioactive waste (uranium: U) utilizing a multi-objective fuzzy optimization in an electrocoagulation process for the iron-stainless steel and aluminum-stainless steel anode/cathode systems. The incorporation of the cumulative uncertainty of result, operational cost and energy consumption are essential key elements in determining the feasibility of the developed model equations in satisfying specific maximum contaminant level (MCL) required by stringent environmental regulations worldwide. Pareto-optimal solutions showed that the iron system (0 ㎍/L U: 492 USD/g-U) outperformed the aluminum system (96 ㎍/L U: 747 USD/g-U) in terms of the retained uranium concentration and energy consumption. Thus, the iron system was further carried out in a multi-objective analysis due to its feasibility in satisfying various uranium standard regulatory limits. Based on the 30 ㎍/L MCL, the decision-making process via fuzzy logic showed an overall satisfaction of 6.1% at a treatment time and current density of 101.6 min and 59.9 mA/㎠, respectively. The fuzzy optimal solution reveals the following: uranium concentration - 5 ㎍/L, cumulative uncertainty - 25 ㎍/L, energy consumption - 461.7 kWh/g-U and operational cost based on electricity cost in the United States - 60.0 USD/g-U, South Korea - 55.4 USD/g-U and Finland - 78.5 USD/g-U.