DOI QR코드

DOI QR Code

Phonon-Assisted Electron Hopping Conduction in the Uranium Doped One-Dimensional Antiferromagnet Ca2CuO3

  • Thanh, Phung Quoc (Center for Materials Science, College of Science, Vietnam National University) ;
  • Yu, Seong-Cho (Department of Physics, Chungbuk National University) ;
  • Nhat, Hoang-Nam (Center for Materials Science, College of Science, Vietnam National University)
  • Published : 2008.12.31

Abstract

The authors studied the conduction mechanism in an uranium doped low dimensional magnetic system $Ca_2CuO_3$. This system exhibits the S=1/2 quasi 1D antiferromagnetic chains of -Cu-O- with strong magnetic coupling, and demonstrates continuous semiconductor-like behavior with constant covalent insulator character. This paper identifies the conduction is due to thermally activated phonon-assisted electron hopping between dopant uranium sites. The parameter a, the characteristic for hopping probability, was determined to be 0.18 ${\AA}^{-1}$. This value manifests a relatively stronger hopping probability for $Ca_2CuO_3$ as compared with other uranium doped ceramics.

Keywords

References

  1. S. B. Stringfellow, S. Gupta, C. Shaw, J. R. Alcock, and R. W. Whatmore, J. of the Eur. Cer. Soc. 22, 573 (2002) https://doi.org/10.1016/S0955-2219(01)00316-8
  2. R. Weinstein, US Patent 6083 885 (2000)
  3. R. Weinstein, and R. P. Sawh, Supercond. Sci. Technol. 15, 1474 (2002) https://doi.org/10.1088/0953-2048/15/10/401
  4. N. Hari Babu, M. Kambara, Y. Shi, D. A. Cardwell, C. D. Tarrant, and K.R. Schneider, IEEE Trans. on Appl. Supercond. 13, 3147 (2003) https://doi.org/10.1109/TASC.2003.812126
  5. M. Eder and G. Gritzner, Supercond. Sci. Technol. 13, 1302 (2000) https://doi.org/10.1088/0953-2048/13/9/303
  6. D. C. Huynh, D. T. Ngo, and N. N. Hoang, J. of Phys: Cond. Matters 19, 106215 (2007) https://doi.org/10.1088/0953-8984/19/10/106215
  7. N. N. Hoang, D. C. Huynh, T. T. Nguyen, D. T. Ngo, D. T. Nguyen, A. Fennie, and Nguyen Chau, Applied Phys. A 92, 715-725 (2008), DOI: 10.1007/s00339- 008-4631- y
  8. K. Yamada, J. Wada, S. Hosoya, Y. Endoh, S. Noguchi, S. Kawamata, and K. Okuda, Physica C 253, 135 (1995) https://doi.org/10.1016/0921-4534(95)00503-X
  9. Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003
  10. M. Viret, L. Ranno, and J. M. D. Coey, Journal of Applied Physics 81(8), 4964 (1997) https://doi.org/10.1063/1.365013
  11. N. N. Hoang, D. C. Huynh, and M. H. Phan, Solid State Commun. 139, 456 (2006) https://doi.org/10.1016/j.ssc.2006.07.011
  12. K. Maiti, D. D. Sarma, T. Mizokawa, and A. Fujimori, Phys. Rev. B 57, 1572 (1998) https://doi.org/10.1103/PhysRevB.57.1572
  13. D. R. Lines, M. T. Weller, D. B. Currie, and D. M. Ogborne, Mater. Res. Bull. 26, 323 (1991) https://doi.org/10.1016/0025-5408(91)90028-K
  14. N. N. Hoang, T. H. Nguyen, and Chau Nguyen, J. Appl. Phys. 103, 093524 (2008) https://doi.org/10.1063/1.2917061