Browse > Article
http://dx.doi.org/10.4283/JMAG.2008.13.4.132

Phonon-Assisted Electron Hopping Conduction in the Uranium Doped One-Dimensional Antiferromagnet Ca2CuO3  

Thanh, Phung Quoc (Center for Materials Science, College of Science, Vietnam National University)
Yu, Seong-Cho (Department of Physics, Chungbuk National University)
Nhat, Hoang-Nam (Center for Materials Science, College of Science, Vietnam National University)
Publication Information
Abstract
The authors studied the conduction mechanism in an uranium doped low dimensional magnetic system $Ca_2CuO_3$. This system exhibits the S=1/2 quasi 1D antiferromagnetic chains of -Cu-O- with strong magnetic coupling, and demonstrates continuous semiconductor-like behavior with constant covalent insulator character. This paper identifies the conduction is due to thermally activated phonon-assisted electron hopping between dopant uranium sites. The parameter a, the characteristic for hopping probability, was determined to be 0.18 ${\AA}^{-1}$. This value manifests a relatively stronger hopping probability for $Ca_2CuO_3$ as compared with other uranium doped ceramics.
Keywords
uranium; phonon-assisted; conduction; antiferromagnet;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 N. N. Hoang, T. H. Nguyen, and Chau Nguyen, J. Appl. Phys. 103, 093524 (2008)   DOI   ScienceOn
2 R. Weinstein, and R. P. Sawh, Supercond. Sci. Technol. 15, 1474 (2002)   DOI   ScienceOn
3 D. C. Huynh, D. T. Ngo, and N. N. Hoang, J. of Phys: Cond. Matters 19, 106215 (2007)   DOI   ScienceOn
4 Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003
5 M. Viret, L. Ranno, and J. M. D. Coey, Journal of Applied Physics 81(8), 4964 (1997)   DOI   ScienceOn
6 N. N. Hoang, D. C. Huynh, and M. H. Phan, Solid State Commun. 139, 456 (2006)   DOI   ScienceOn
7 D. R. Lines, M. T. Weller, D. B. Currie, and D. M. Ogborne, Mater. Res. Bull. 26, 323 (1991)   DOI   ScienceOn
8 S. B. Stringfellow, S. Gupta, C. Shaw, J. R. Alcock, and R. W. Whatmore, J. of the Eur. Cer. Soc. 22, 573 (2002)   DOI   ScienceOn
9 R. Weinstein, US Patent 6083 885 (2000)
10 N. Hari Babu, M. Kambara, Y. Shi, D. A. Cardwell, C. D. Tarrant, and K.R. Schneider, IEEE Trans. on Appl. Supercond. 13, 3147 (2003)   DOI   ScienceOn
11 M. Eder and G. Gritzner, Supercond. Sci. Technol. 13, 1302 (2000)   DOI   ScienceOn
12 N. N. Hoang, D. C. Huynh, T. T. Nguyen, D. T. Ngo, D. T. Nguyen, A. Fennie, and Nguyen Chau, Applied Phys. A 92, 715-725 (2008), DOI: 10.1007/s00339- 008-4631- y   DOI
13 K. Yamada, J. Wada, S. Hosoya, Y. Endoh, S. Noguchi, S. Kawamata, and K. Okuda, Physica C 253, 135 (1995)   DOI   ScienceOn
14 K. Maiti, D. D. Sarma, T. Mizokawa, and A. Fujimori, Phys. Rev. B 57, 1572 (1998)   DOI   ScienceOn